نوع مقاله : مقاله پژوهشی

نویسندگان

1 پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی ایران،

2 دانشکده مهندسی انرژی و فیزیک، دانشگاه صنعتی امیرکبیر

3 پژوهشکده‌ی چرخه سوخت هسته‌ای، پژوهشگاه علوم و فنون هسته‌ای

4 پژوهشکده‌ی چرخه‌ی سوخت هسته‌ای، پژوهشگاه علوم و فنون هسته‌ای

چکیده

(با عرض پوزش به دلیل مشکلات پیش آمده در تایپ فرمول در سایت لطفا اصل چکیده را از روی نسخه‌ پی دی اف مطالعه فرمایید با تشکر)

177Luبه دلیل ویژگی­‌های هسته­‌ای مطلوبش از جمله نیمه­‌عمر 6.73d، انرژی بتای  بیشینه‌­ی498keV و نیز امکان تولید آن در مقادیر بالا با استفاده از یک رآکتور با شار متوسط، هسته‌­ی پرتوزای جذابی در کاربرد­های گوناگون درمانی است. در این مطالعه، از طریق پرتودهی نوترون حرارتی به 176Ybدر رآکتور تحقیقاتی تهران با شار (4×1013n/cm2.s) ایزوتوپ 177Lu طی واکنش Lu177 Yb177Yb(n,γ)176 با خلوص هسته­‌ی پرتوزای 99.9% تهیه شد. از روش کروماتوگرافی استخراجی برای جداسازی مقادیر میکروگرم 177Lu از مقادیر ماکروگرم ایتربیم استفاده شد. با استفاده از روش یاد شده، بهره­‌ی جداسازی به مقدار 75% و فاکتور آلودگی­زدایی برابر با 2000 حاصل شد. مدت زمان انجام کل واکنش از ترخیص نمونه تا رسیدن به هسته­‌ی پرتوزا، بدون حامل افزوده، تقریباً برابر با 1.5h بود. رزین مورد استفاده حاوی یک استخراج‌­کننده با فرمول شیمیایی دی (2-اتیل هگزیل) اسید اورتوفسفریک (HDEHP) است. در نهایت، هسته­‌ی پرتوزا بدون حامل افزوده­‌ی 177Lu با پرتوزایی 230.1 MBq (6.22 mCi) به دست آمد . 177Lu بدون حامل  افزوده را می‌­توان برای نشان­‌دارسازی به منظور پرتودرمانی با هسته­‌های پرتوزا استفاده کرد.

کلیدواژه‌ها

عنوان مقاله [English]

Production of 177Lu in No Carrier Added (NCA) form by Irradiation of Natural and Enriched Target in Tehran Research Reactor for Nuclear Medicine Approch

نویسندگان [English]

  • N Salek 1
  • M Shansaei Zafarghandi 2
  • S Shirvani Arani 3
  • A Bahrami-Samani 4
  • M Ghanadi-Maragheh 4

چکیده [English]

: 177Lu owing to its favorable nuclidic characteristics, such as tl/2=6/73d  and Eβ(max)= 497 keV and ease of its large-scale production using medium flux research reactors, is an attractive radionuclide for various therapeutic applications. In this study 177Lu with  the radionuclide purity of  >99.9% was obtained by thermal neutron bombardment (4×1013n/cm2.s) of 176Yb target through the 176Yb(n,γ) 177Yb  177Lu process. The method of separation of 177Lu from macro amount of Yb target was based on extraction chromatographic (EXC). The extractant used in resin was di(2-ethylhexyl) orthophosphoric acid (HDEHP). Finally, (177Lu) with a specific activity of 230.1 MBq (6.22 mCi) was prepared without the addiation of any carrier radionuclide. The process provides a separation yield of 75% 177Lu and a decontamination factor of 2000. The whole process to prepare NCA 177Lu takes almost 1.5 hours. The resultant NCA 177Lu can be used for preparation of NCA 177Lu labeled radiotherapeuticals.
 

کلیدواژه‌ها [English]

  • Radiotherapy
  • No-Carrier Added (NCA)
  • Lutethium
  • Labeling
[1] A.A. Keeling, A.T.M. Vaughan, Factors influencing the adsorption of Lutetium177 on hydroxyapatite, Nucl. Med. Biol. 15 (1988) 489-492.
 [2] J. Schlom, K. Siler, D.E. Milenic, D. Eggensperger, D. Colcher, L.S. Miller, D. Houchens, R. Cheng, D. Kaplan, W. Goeckeler, Monoclonal antibody-based therapy of a human tumor xenograft with a 177Lutetium-labeled immunoconjugate, Cancer Res. 51 (1991) 2889-2896.
 [3] P.S. Balasubramanian, Separation of carrier-free lutetium-177 from neutron irradiated natural ytterbium target, J Radioanal. Nucl. Chem. 185 (1994) 305-310.
 [4] A. Ando, I. Ando, N. Tonami, S. Kinuya, K. Kazuma, A. Kataiwa, M. Nakagawa, N. Fujita, 177Lu-EDTMP: A potential therapeutic bone agent, Nucl. Med. Commun. 19 (1998) 587-591.
 [5] G.A. Rutty Sola, M.G. Arguelles, D.L. Bottazzini, Lutetium177-EDTMP for bone pain palliation. Preparation, biodistribution and pre-clinical studies, Radiochim. Acta. 88 (2000) 3-4.
 [6] D.J. Kwekkeboom, W.H. Bakker, P.P. Kooij, M.W. Konijnenberg, A. Srinivasan, J.L. Erion, M.A. Schmidt, J.L. Bugaj, M. de Jong, E.P. Krenning, [177Lu-DOTA0,Tyr3]octreotate: Comparison with [111In-DTPA0] octreotide in patients, Eur. J. Nucl. Med. 228 (2001) 1319-1325.
 [7] S. Liu, E. Cheung, M.C. Ziegler, M. Rajopadhye, D.S. Edwards, 90Y and 177Lu labeling of a DOTA-conjugated vitronectin receptor antagonist useful for tumor therapy, Bioconjugate Chem. 12 (2001) 559-568.
 [8] S. Chakraborty, T. Das, P.R. Unni, H.D. Sarma, G. Samuel, S. Banerjee, M. Venkatesh, N. Ramamoorthy, M.R.A. Pillai, 177Lu labelled polyaminophosphonates as potential agents for bone pain palliation, Nucl. Med. Commun. 23 (2002) 67-74.
 [9] T. Das, S. Chakraborty, P.R. Unni, S. Banerjee, G. Samuel, H.D. Sarma, M. Venkatesh, M.R. Pillai, 177Lu labeled cyclic polyaminophosphonates as potential agents for bone pain palliation, Appl. Radiat. Isot. 57 (2002) 177-184.
 [10] M.R.A. Pillai, S. Chakraborty, T. Das, M. Venkatesh, N. Ramamoorthy, Production logistics of 177Lu for radionuclide therapy, Appl. Radiat. Isot. 59 (2003) 109-118.
 [11] M.R. Pillai, M. Venkatesh, S. Banerjee, G. Samuel, K. Kothari, A. Dash, P.R. Unni, Development of radioactively labeled cancer seeking biomolecules for targeted therapy. In: ‘Labelling techniques of biomolecules for targeted radiotherapy, IAEA TECDOC-1359, (2003) 107-122.
 [12] S. Banerjee, T. Das, S. Chakraborty, G. Samuel, A. Korde, S. Srivastava, M. Venkatesh, 177Lu-DOTA-Lanreotide: A novel tracer as a targeted agent for tumor therapy, Nucl. Med. Biol. 31 (2004) 753-759.
 [13] S. Banerjee, S. Chakraborty, T. Das, K. Kothari, B. Mathew, G. Samuel, H.R. Sarma, P.R. Chaudhary, 177Lu-DOTMP, 153Sm-DOTMP, 175Yb-EDTMP and 186/188Re-CTMP: Novel Agents for bone pain palliation and their comparison with 153Sm-EDTMP, World. J. Nucl. Med. 3 (2005) 22-37.
 [14] S. Banerjee, T. Das, S. Chakraborty, G. Samuel, A. Korde, M. Venkatesh, M.R. Pillai, An estradiol-conjugate for radiolabeling with 177Lu: An attempt to prepare a radiotherapeutic agent, Bioorg. Med. Chem. Lett. 13 (2005) 4315-4322.
 [15] S. Chakraborty, T. Das, S. Banerjee, L. Balogh, P.R. Chaudhari, H.D. Sarma, 177Lu-EDTMP: A viable bone pain palliative in skeletal metastasis, Cancer Biother. Radiopharm. 23 (2008) 202-213.
 [16] D. Máthé, L. Balogh, A. Polyák, R. Király, T. Márián, D. Pawlak, J.J Zaknun, M.R. Pillai, Multi-species animal investigation on biodistribution, pharmacokinetics and toxicity of 177Lu-EDTMP formulation, Nucl. Med. Biol. 37 (2010) 215-226.
 [17] M.R. Pillai, Metallic Radionuclides and Therapeutic Radiopharmaceuticals, Institote of Nuclear Chemistry and Technology (2010).
 [18] Production and chemical processing of 177Lu for nuclear medicine at the Munich research reactor FRM-II, Thesis’s Zuzana Dvorakov. Institut fur Radiochemie der Technischen Universitat Munchen (2007).
 [19] G.R. Choppin, R.J. Silva, Separation of the lanthanides by ion exchange with alpha-hydroxyisobutyric acid, J. Inorg. Nucl. Chem. 3 (1956) 153–154.
 [20] F.O. Denzler, N.A. Lebedev, A.F. Novgorodov, F. Rosch, S.M. Qaim, Production and radiochemical separation of 147Gd, Appl. Radiat. Isot. 48 (1997) 319–326.
 [21] S. Lahiri, K.J. Volkers, B. Wierczinski, Production of 166Ho through 164Dy(n,γ) 165Dy(n, γ) 166Dy(β-)166Ho and separation of 166Ho, Appl. Radiat. Isot. 61 (2004) 1157–1161.
 [22] K. Hashimoto, H. Matsuoka, S. Uchida, Production of no-carrier-added 177Lu via the 176Yb(n,γ) 177Yb 177Lu process, J. Radioanal. Nucl. Chem. 255 (2003) 575–579.
 [23] E.P. Horwitz, C.A.A. Bloomquist, Chemical separations for super-heavy element searches in irradiated uranium targets, J. Inorg. Nucl. Chem. 37 (1975) 425–434.
 [24] E.P. Horwitz, C.A.A. Bloomquist, W.H. Delphin, G.F. Vandegrift, Radiochemical and Isotope Separations by High-Efficiency Liquid-Liquid Chromatography, J. Chromatogr. 125 (1976) 203–218.
 [25] Eichrom Technologies, Inc. http:// eichrom. com/ index.cfm, accessed April 16 (2007).
 [26] S. Mirzadeh, M. Du, A.L. Beets, F.F. Knapp, Method for preparing high specific activity 177Lu, U.S. Patent ( 2004).
 [27] E.P. Horwitz, D.R. McAlister, A.H. Bond, R.E. Barrans, J.M. Williamson, A process for the separation of 177Lu from neutron irradiated 176Yb targets, Appl. Radiat. Isot. 63 (2005) 23–36.