نوع مقاله : مقاله پژوهشی

نویسندگان

1 پژوهشکده‌ی فیزیک پلاسما و گداخت هسته‌ای، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی،

2 گروه فیزیک و بیوفیزیک، واحد علوم پزشکی تهران

چکیده

در این مقاله پس از مروری بر تاریخچه­‌ی دستگاه‌­های پلاسمای کانونی، موضوع کانونی شدن پلاسما مطرح،  و در پی آن دو دستگاه جدید پلاسمای کانونی نوع مَدِر و نتایج پژوهشی حاصل از مقایسه­‌ی آن­ها معرفی می­‌شوند. هدف اصلی این پژوهش، بررسی چگونگی تأثیر ظرفیت بانک خازنی C0  و القائیدگی مدار L0 ، بر انرژی پرتو ایکس سخت گسیل شده از دستگاه­‌های پلاسمای کانونی نوع مَدِر بوده است. این پژوهش نشان داد که تـأثیر کاهش ضریب  رادیکال L0C0 بر افزایش انرژی پرتو ایکس سخت، به مراتب بیش­تر از تأثیر ناشی از تغییر انرژی تخلیه است، به نحوی که با وجود کاهش 55% انرژی تخلیه، کاهش40%  مقدار  رادیکال L0C0 باعث افزایش 227% انرژی پرتو ایکس سخت شده است. به بیان دیگر، در طراحی دستگاه‌­های پلاسمای کانونی نوع مَدِر، باید توجه داشت که گسیل پرتو ایکس سخت با انرژی بیش­تر، الزاماً مترادف با مصرف انرژی تخلیه­‌ی بیش­تر نیست.

کلیدواژه‌ها

عنوان مقاله [English]

The Effect of Electrical Parameters of Mather Type Plasma Focus Devices on Energy of the Hard X-Ray Yield

نویسندگان [English]

  • M. A Tafreshi 1
  • D Rostamifard 1
  • A Nasiri 1
  • T D. Mahabadi 2

چکیده [English]

In this paper, after reviewing the history of plasma focus devices, the plasma focusing issue is raised and then the results of comparisons between two new Mather type plasma focus devices are presented. The main aim of this investigation was to study the effect of the energy bank capacitance , and the circuit inductance , on the energy of the hard X-ray of Mather type devices. This invetigation showed that the effect of the  reduction, on the increment of the hard X-ray energy, is much more than the effect of the discharge energy variation. That is, in spite of 55% discharge energy decrement, a 40% reduction of the , leads to 227% increment of the hard X-ray energy. That is observed in a Mather type device designing. It should be mentioned that the more energy consumption is not a neccesary condition for a more energetic hard X-ray emission.

کلیدواژه‌ها [English]

  • Plasma Focus
  • Mather Type
  • Hard X-Ray
  • Speed Factor
[1] N.V. FilippovT.I. Filippova, I.V. KhutoretskaiaV.V. MialtonV.P. Vinogradov, Megajoule scale plasma focus as efficient x-ray source, Phys. Lett. A  211-31(1996) 68-171.
 [2] S.M. HassanE.L. ClarkC. PetridisG.C. AndroulakisJ. ChatzakisP. LeeN.A. PapadogiannisM. Tatarakis, Filamentary Structure of current sheath in miniature plasma focus, IEEE Trans. Plasma Sci. 39 (2011) 2432-2433.
 [3] N.V. Filippov, T.I. Filippova, M.A. Karakin, V.I. Krauz, V.P. Tykshaev, V.P. Vinogradov, Y.P. Bakulin, V.V. Timofeev, V.F. Zinchenko, J.R. Brzosko, and J.S. Brzosko, Filippov type plasma focus as intense source of hard x-rays (Ex  50 keV), IEEE Trans. Plasma Sci24-4(1996( 1215-1222.
 [4] N.V. Filippov, T.I. Filippova, V.P. Vinogradov, Dense, High-Temperature Plasma in a noncylindrical z-pinch compression, Nucl. Fusion Suppl. 2 (1962) 577.
 [5] J.W. Mather, Formation of a High-Density Deuterium Plasma Focus, Phys. Fluids 8-2 (1965) 366-377.
 [6] M.A. Abd Al-Halim, Simulation of Plasma Focus Devices with Hemisphere Electrodes, J. Fusion Energ. 29 (2010) 134-140.
 [7] M.A. Tafreshi, M. Farrahi, M. Lamehi, Sh. Goudarzi, H. Habibi, M. Memarzadeh, V. Siahpoush, E. Saeedzadeh, V.P. Vinogradov, V.I. Krauz, V.A. Krivstov, M.A. Karakin, V.V. Myalton, V.P. Tykshaev,Dena a new PF device, Nukleonika 46 (1) )2001) S85-S87.
 [8] S. Vahedi, S. Sobhanian, M.A. Mohammadi, V. Siahpoush, Preliminary measurements in Sahand plasma-focus emphasizing on the temporal characteristics of hard and soft X-rays, Czech. J. Phys. 56-2 (2006) B389-B395.
 [9] M.H.S. Alavi, M. Habibi, R. Amrollahi, and F. AfsharTaromi, A study on Plasma polymerization of acrylic acid using APF plasma focus device, J. Fusion Energ. 30-2 (2011) 184-189.
 [10] D. Piriaei, T.D. Mahabadi, S. Javadi, M. Ghorannevis, S.H. Saw, S. Lee, The study of pinch regimes based on radiation-enhanced compression and anomalous resistivity phenomena and their effects on hard X-ray emission in a Mather type dense plasma focus device (SABALAN2), Phys. Plasmas 22 (2015) 123507.
 [11] S.E. Sanaz, Namini, H.Z. khatir, M. Ghoranneviss, M.F. Aghamir, R.A. Behbahani, M. Kashani, Ion Beam Emission in a Low Energy Plasma Focus Device, J. Fusion Energ. 29 (2010) 471–475.
 [12] B. Shirani and F. Abbasi, Construction and experimental study of a 2.5kJ, simply configured, Mather Type plasma focus device, Braz. J. Phy. 40-2 (2010)125-130.
 [13] V. Damideh, A. Asle-Zaeem, A. Heidarnia, A. Sadighzadeh, M.A. Tafreshi, F. AbbasiDavani, M. Moradshahi, M. BakhshzadMahmoudi, and R. Damideh, Design and fabrication of 11.2 kJ Mather-type plasma focus IR-MPF-1 with high drive parameter. J. Fusion Energ. (2012) 31-1 47-51.
 [14] V. Damideh, M.A. Tafreshi, A. Heidarnia, A. Asle-Zaeem, A. Sadighzadeh, Design and construction of the 5 kJ Filippov-type plasma focus with brass anode, J. Fusion Energ. 30-6  (2011) 462-465.
 [15] L. Soto, New trends and future perspectives on plasma focus research, Plasma Phys Contr. F. 47 (2005) A361-A381.
 [16] N.V. Filippov, T.I. Filippova, A.N. Filippov, M.A. Karakin, E.Yu. Khautiev, V.I. Krauz, V.V. Mialton. S.A. Nikulin, V.P. Tykshaev, and V.P. vinogradov. Experimental simulation of the collisionless shock wave by plasma focus, Czech. J. Phys. 50- S3 (2000) 127.
 [17] R. Gratton, A.R. Piriz, On the use of plasma foci as drivers for pellet implosions, Nucl. Fusion 26-4, (1986) 483.
 [18] B. Temple, O. Barnouin, and G.H. Miley, Plasma focus device for use in space propulsion, Fusion Sci. Technol. 19-3P2A (1991) 846-851.
 [19] E.P. Bogolyubov, V.D. Bochkov. V.A. Veretennikov, L.T. Vekhoreva, V.A. Gribkov, A.V. Dubrovskii, Yu.P. Ivanov, A.I. Isakov. O.N. Krokin. P. Lee, V.Ya. Nikulin. A. Serban. P.V. Silin, X. Feng, and G.X. Zhang, A powerful soft X-ray source for X-ray lithography based on plasma focusing, PhysicaScripta 57 (1998) 488-494.
 [20] L.I. Ivanov, V.N. Pimenov, S.A. Maslyaevet, Elena V. Dyomina, Vladimir A. Gribkov, Franco Mezzetti, Paola DeChiara, and Linda Pizzo, Influence of dense deuterium plasma pulses on materials in plasma focus device, Nukleonika 45(3) (2000) 203-207.
 [21] Shaista Zeb, A. Qayyum, MehboobSadiq,  M. Shafiq, A. Waheed, and M. Zakaullah, Deposition of diamond-like carbon films using graphite sputtering in neon dense plasma, Plasma Chem. Plasma P. 27-2 (2007) 127-139.
 [22] V.I. Krauz, M.G. Levashova, M.A. Karakin, O.N. Krokhin, V.S. Lisitsa, A.N. Mokeev, V.V. Myalton, V.YaNikulin, A.V. Oginov. V.P. Smirnov, and V.E. Fortov, Influence of the radiation of the plasma focus-current sheath on the impolsion dynamics of condensed targets, Plasma Phys. Rep. 34-1 (2008) 43-51.
 [23] S. Lee, Plasma focus radiative mode: Review of the Lee model code, J. Fusion Energ. 33 (2014) 319-335.
 [24] V. Siahpoush, M.A. Tafreshi, S. Sobhanian, and S. Khorram, Adaptation of Sing Lee’s model to the Filippov type plasma focus geometry. Plasma Phys. Contr. F.  47  (2005) 1065-1075.
 [25] M.A. Tafreshi, M.M. Nasseri, N. Nabipour, D. Rostamifard and A. Nasiri, Application of plasma focus device in fast industrial radiography, J. Fusion Energ. 33 (2014) 689-692.
 [26] V. Raspa, L. Sigaut, R. Llovera, P. Cobelli, B. Knoblauch, R. Vieytes, A. Clausse, and C. Moreno, Plasma focus as a powerful hard X-ray source for ultrafast imaging of moving metallic objects, Braz J. Phys. 34- 4B (2004) 1696-1699.
 [27] A. Kanani, B. Shirani, I. Jabbari, J. Mokhtari, Assessment of image quality in X-ray radiography imaging using a small plasma focus device, Radiat. Phys. Chem. 101 (2014) 59-65.
 [28] Sing Lee and Adrian Serban, Dimensions and lifetime of the plasma focus pinch, IEEE Trans. Plasma Sci. 24-3 (1996) 1101-1105.