نوع مقاله : مقاله پژوهشی

نویسندگان

1 پژوهشکده‌ی فیزیک و شتابگرها، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی ایران،

2 پژوهشکده‌ی گداخت هسته‌ای، پژوهشگاه علوم و فنون هسته‌ای

3 گروه فیزیک، دانشگاه پیام نور

چکیده

با تغییر در شکل هندسی دام و تأثیر نیروی میراکننده، نواحی پایداری اول و دوم در دام چهارقطبی کشیده­ی پائول، بررسی شد. در این مقاله، منظور از تغییر در شکل هندسی دام، تغییر در فواصل بین الکترود حلقه (2r0) و الکترودهای کلاهک (2z0) است. برای این هدف،پارامتر2(z0/r0)=n  در محاسبات وارد شد. هم­‌چنین، تأثیر نیروی میراکننده، با وارد کردن ثابت میرایی k در معادله­‌ی ماتی­یو بررسی شد. دستگاه معادلات دیفرانسیل حاکم بر رفتار یون درون دام چهارقطبی با توجه به آثار هم­‌زمان نیروی میراکننده و هندسه­‌ی دام، در نظر گرفته شده است. این معادلات با استفاده از روش رونگه کوتای مرتبه‌­ی 5 و مرتبه­‌ی 6 ورنر (RKV56) به دقت محاسبه، و نواحی پایداری به دست آمده با نواحی پایداری در غیاب نیروی میراکننده در دام یونی ایده­‌آل (r02=2z02) مقایسه شده است. نتایج به دست آمده نشان می‌­دهند که در یک دام یونی rf، نیروی میرایی و شکل هندسی دام، نقش تعیین­کننده­ای در جابه‌جایی نواحی پایداری دارند. یادآوری می‌­شود که محاسبه­‌ی نواحی پایداری در حضور نیروی میراکننده با توجه به تغییر در فاصله­‌ی بین الکترودهای کلاهک با این روش برای اولین بار گزارش می­‌شود.

کلیدواژه‌ها

عنوان مقاله [English]

Modification of the Stability Regions in Stretched Paul Ion Trap by Damping Force

نویسندگان [English]

  • I Ziaeian 1
  • S. M Sadat Kiai 2
  • M Zebardast 3
  • A. R Goosheh 3

چکیده [English]

With the change of an ion trap geometrical shape, ring and end-cap electrodes, and also damping force effects, the first and second stability regions are studied in a stretched Paul ion trap. In this article, according to a new idea, we changed the trap geometry based on the change in distances between the ring electrode (2r˳) and end-cap electrodes (2z˳). For this purpose, the geometrical parameter n=(r˳/z˳)2 was introduced in our calculations. Also, for the damping effects, we entered a viscous damping factor (k) in the Mathieu equation. The set of differential equation governing the motion of the confined ion is considered, taking into account the effect of damping force and the ion trap geometry. The Mathieu type differential equations were solved using Runge-Kutta Verner fifth-order and sixth-order method (RKV56). Comparisons were made with the corresponding stability diagrams without considering the effects of damping force in an ideal ion trap . The numerical results showed that, for a given ion trap mode i.e., rf only mode, the damping force and the trap geometry played important roles in the relocation of the stability diagrams. The first and second stability regions in the presence of the damping force, according to trap’s geometry, are reported for the first time.

کلیدواژه‌ها [English]

  • : Damping Force
  • Trap Geometry
  • Quadrupole Potential
  • Runge-Kutta Verner
[1] J. Eschner, G. Morigi, F. Schmidt, R. Blatt, Laser cooling of trapped ions, J. Opt. Soc. Am. B. 20 (2003) 1003-1015.
 [2] P.H. Dawson, Quadrupole mass spectrometry and its applications, AIP, New York (1995) 69.
 
[3] X. Zhu, D. Qi, Characteristics of trapped ions in the second stability region of a Paul trap, J. Mod. Opt. 39 (1992) 291-303.
 
[4] R.F. Wuerker, H. Shelton, R.V. Langmuir, Electrodynamic containment of charged particles, J. Appl. Phys. 30 (1959) 342-349.
 
[5] R.E. March, J.F.J. Todd, Quadrupole Ion Trap Mass Spectrometry, 2nd ed., Wiley, New Jersey( 2005) 50-58.
 
[6] I. Ziaeian, S.M. Sadat Kiai, M. Ellahi, S. Sheibani, A. Safarian, S. Farhangi, Theoretical study of the effect of ion trap geometry on the dynamic behavior of ions in a Paul trap, Int. J. Mass Spectrom. 304 (2011) 25-28.
 
[7] R.E. March, An introduction to quadrupole ion trap mass spectrometry, J. Mass Spectrom. 32 (1997) 351-369.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 [8] J.H. Verner, Applied numerical mathematics, Appl. Numer. Math. 22 (1996) 345-357.
 
[9] T.E. Simos, G. Papakaliatakis, Modified Runge-Kutta Verner methods for the numerical solution, Appl. Math. Model. 22 (1998) 657-670.
 
[10] I. Ziaeian, H. Noshad, Theoretical study of the effect of damping force on higher stability regions in a Paul trap, Int. J. Mass spectrom. 289 (2010) 1-5.
 
[11] K. Blaum, F. Herfurth, Trapped Charged Particles and Fundamental Interactions, Lecture Notes in Physics 749, Springer, Berlin (2008) 99-100.
 
[12] T. Hasegawa, K. Uehara, Dynamics of single particle in a Paul trap in the presence of the damping force, Appl. Phys. B. 61 (1995) 159-163.