طراحی باریکه‌ی نوترون گرمایی عمودی در رآکتور مینیاتوری اصفهان به منظور پرتونگاری نوترونی

نوع مقاله: یادداشت علمی و فنی

نویسندگان

پژوهشکده‌ی راکتور و ایمنی هسته‌ای، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی ایران، صندوق پستی: 1589-81465، اصفهان ـ ایران

چکیده

 ( با عرض پوزش به دلیل عدم امکان تایپ فرمول اصل چکیده را از روی پی دی اف مطالعه فرمایید)
در این تحقیق، امکان­سنجی استفاده از رآکتور MNSR اصفهان به عنوان چشمه نوترون حرارتی برای پرتونگاری نوترونی انجام شده است. برای تولید یک باریکه با شدت و کیفیت مناسب از آلومینیم با ضخامت 0.7 سانتی­متر به عنوان فیلتر نوترون سریع و از بیسموت و سرب به ضخامت 1 سانتی­متر به عنوان فیلتر گاما بهره برده شده است. نسبت L/D سامانه پرتونگاری نوترونی شبیه‌سازی شده 90 و زاویه واگرایی برابر 2.1 درجه می‌باشد. در این طراحی شار نوترون حرارتی در محل تصویربرداری .s2n/cm 05 E+47/1، شار نوترون­های حرارتی به دز گاما
/mR2 n/cm06E+96/2 و نسبت شار نوترون‌­های حرارتی به شار کل نوترون­‌ها 5/92% محاسبه شد. به کمک ساخت این سامانه پرتونگاری برای رآکتور MNSR می‌توان به بسیاری از کاربردهای عملی و علمی یک سامانه پرتونگاری با نوترون دست یافت.

کلیدواژه‌ها


عنوان مقاله [English]

Design calculation of a vertical thermal neutron beam for neutron radiography at Esfahan MNSR

نویسندگان [English]

  • J Khorsandi
  • A Asgari
  • P Kavyani
  • J Mokhtari
چکیده [English]

In this paper, the MCNPX code is applied for feasibility study of using the Isfahan MNSR as a neutron source for neutron radiography. To produce a good neutron beam in terms of intensity and quality, the aluminum (Al) with thickness of 0.7 cm, and bismuth (Bi) and lead (Pb) with thickness of 1 cm are used as the fast neutron filter, and the gamma filter, respectively. The L/D ratio of the designed neutron radiography facility is 90 and the diverging angle is 2.1degree. The thermal neutron flux, the ratio of thermal neutron to gamma dose rate, and the thermal neutron content at the beam exit plane are evaluated 1.47E+05 n/cm2.s,  2.96E+06 n/cm2.mR, and 92.5%, respectively. If such thermal neutron beam is built in Isfahan MNSR, many practical and scientific applications of the NR would be realized.

[1] T. Daozhu, Iran Miniator Reactor Pure Water Production System, China Institue of Atomic Energy, (1990).

 [2] G. Jijin, General Description of Miniature Neutron Source Reactor, China Institute of Atomic Energy, (1990).

 [3] J. Mokhtari, F. Faghihi, J. Khorsandi, K. Hadad, Conceptual design study of the low power and LEU medical reactor for BNCT using in-tank fission converter to increase epithermal flux, Progress in Nuclear Energy, 95 (2017) 70-77.

 [4] C.O. Fischer, J. Stade, W. Bock, In: Proceedings of Fifth World Conference on Neutron Radiography, June 17±20, Berlin, Germany. DGZFP, (1997).

 [5] M. Dinca, M. Pavelescu, Collimated neutron beam for neutron radiography, Rom. Journ. Phys, 51, 3-4 (2006) 435–441.

 [6] J. Turkoglu, Design, Construction and Characterization of an External Neutron Beam Facility at the Ohio State University Nuclear Reactor Laboratory, Graduate Program in Nuclear Engineering, (2012).

 [7] I. Shaaban, Design of the thermal neutron beam for neutron radiography at the Syrian MNSR, Annals of Nuclear Energy, 37 (2010) 1588–1594.

 [8] I. Shaaban, Design calculation of a horizontal thermal neutronic beam for neutron radiography at the Syrian MNSR, J. Radioanal Nucl Chem, (2014).

 [9] J. Mokhtari, F. Faghihi, J. Khorsandi, Design and optimization of the new LEU MNSR for neutron radiography using thermal column to upgrade thermal flux, Progress in Nuclear Energy, 100 (2017) 221-232.

 [10] M.H. Choopan Dastjerdi, H. Kalafi, Y. Kasesaz, Design construction and characterization of a new neutron beam for neutron radiography at the Tehran Research Reactor, Nuclear Instruments and Methods in Physics Research, (2016) 1-8.

[11] M.H. Choopan Dastjerdi, H. Khalafi, Design of a thermal neutron beam for a new neutron imaging facility at Tehran research reactor, Physics procedia, 69 (2015) 92-95.

 [12] M.H. Dastjerdi, A. Movafeghi, H. Khalafi, Y. Kasesaz, The quality assessment of radial and tangential neutron radiography beamlines of TRR, Journal of Instrumentation, 12, 07 (2017) P07008.

 [13] M.H.C. Dastjerdi, H. Khalafi, Y. Kasesaz, A. Movafeghi, Inspection of domestic nuclear fuel rods using neutron radiography at the Tehran Research Reactor, Materials Testing, 58-9 (2016) 763-766.

 [14] S. Agosteo, C. Birattari, A. Foglio Para, M. Silari, FLUKA simulations and measurements for a dump for a 250 GeV/c hadron beam, Math. Comput. Simul., 55, 1-3 (2001) 3-14.

 [15] H. Nilsson, E. Dubaric, M. Hjelm, Monte Carlo simulation of the transient response of single photon absorption in X-ray pixel detectors, Math. Comput. Simul., 62, 3-6 (2003) 471-478.

 [16] H. Zaidi, Relevance of accurate Monte Carlo modeling in nuclear medical imaging, Med. Phys, 26 (1999) 64-75.

 [17] K. Kishore, Development of a Thermal Neutron Imaging Facility at the N.C. State University PULSTAR reactor, (2005).

 [18] IAEA-TECDOC-1604, Neutron Imaging: A Non-Destructive Tool for Materials Testing, Report of a coordinated research project, (2003–2006).

 [19] J. John, Jr. Callinan, Radiography in Modern Industry, fourth edition of Radiography in Modern Industry, EASTMAN KODAK COMPANY, (1980).

 [20] J. Khorsandi, A. Asgari, P. Kavyani, The feasibility and design of the neutron radiography system for the MNSR reactor, report, Reactor and Nuclear Safety Research School, Esfahan, (2015), In Farsi.

 [21] H. Ghasemi, A. Shirani, Determination of the neutron energy spectrum in the MNSR reactor, (2002), In Farsi.

  [22] S. Koerner, B. Schillinger, P. Vontobel, H. Rauch, A neutron tomography facility at a low power research reactor. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom, Detect. Assoc. Equip. 471, 1 (2001) 69-74.

 [23] L.G.I. Bennett, W.J. Lewis, G.M. Macgillicvray, Enhancements to the neutron radiology system on the SLOWPOKE-2 facility at RMC. Nondestruct, Test. And Eval. 16, 2-6 (2001) 177-189.