ارزیابی فعالیت برخی از آنزیم‌های دفاعی مهم در برنج جهش‌یافته‌ی مقاوم به بیماری بلاست

نوع مقاله: مقاله پژوهشی

نویسندگان

1 گروه اصلاح نباتات و بیوتکنولوژی، دانشکده‌ی تولید گیاهی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، صندوق پستی: 15739-49138، گرگان ـ ایران

2 مؤسسه‌ی تحقیقات برنج کشور، معاونت مازندران، سازمان تحقیقات، آموزش و ترویج کشاورزی، صندوق پستی: 91951-46191، آمل ـ ایران

3 گروه زراعت و اصلاح نباتات، دانشکده‌ی کشاورزی، دانشگاه کردستان، صندوق پستی: 15175-66177، سنندج ـ ایران

چکیده

بیماری بلاست، که توسط قارچ مگناپورت گریسیا، با فرم غیرجنسی پریکولاریا گریسیا، ایجاد می‌شود از مهم‌ترین بیماری‌های قارچی برنج در منطقه‌های گرمسیری و معتدل دنیا و هم‌چنین ایران است. گیاهان جهش‌یافته‌ی حاصل از اصلاح جهشی به دلیل داشتن زمینه‌ی ژنتیکی یکسان با والدشان، مواد آزمایشی مناسبی برای تجزیه‌های مقایسه‌ای و تشریح سازوکارهای مولکولی هستند. بدین منظور در آزمایشیبذرهای دو ژن‌مانه­ی برنج شامل رقم جهش‌یافته‌ی (پویا) و رقم والد مربوط به آن (موسی‌طارم) از مؤسسه‌ی تحقیقات برنج ایران تهیه شده و در آزمایش‌های گلخانه‌ای مورد استفاده قرار گرفتند. ارزیابی مؤلفه‌های مقاومت نشان داد که رقم جهش‌یافته‌ی پویا دارای نوع مقاوم و رقم موسی‌طارم دارای نوع حساس هستند. بررسی‌های زیست‌شیمیایی در شرایط کنترل و القای بیماری نشان داد که میزان فعالیت آنزیم‌های کاتالاز، پراکسیداز و پلی‌فنول ‌اکسیداز در رقم‌ جهش‌یافته‌ی پویا بیش‌تر از رقم موسی‌طارم بود، درحالی‌که میزان اکسایش سلولی کم‌تری نسبت به آن داشت. با توجه به نقش مثبت آنزیم‌های دفاعی در کنترل پیشرفت بیماری بلاست، رقم‌ جهش‌یافته‌ی پویا با فعالیت بیش‌تر آنزیم‌های دفاعی وضعیت بهتری نسبت به رقم والد خود نشان داد که بیانگر مقاومت آن در برابر بیماری بلاست است.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of several important defense enzyme activities in mutant rice resistant to blast disease

نویسندگان [English]

  • D E. Almas 1
  • S Navab Pour 1
  • A Yamchi 1
  • Kh Zeinli Nejad 1
  • A Momeni 2
  • Gh Mirzaghaderi 3
چکیده [English]

Blast disease, caused by fungus Magnaporthe grisea (Hebert) Barr, with asexual form Pyricularia grisea (Cooke) Sacc, is the main fungal disease of rice in the tropical and temperate regions of the world and Iran. Mutant plants derived from mutation breeding due to having the same genetic background with their wild-type are useful experimental material for comparative analysis and dissecting molecular mechanisms. For this purpose, seeds of two rice genotypes including mutant variety (Pooya) and its wild-type parent cultivar (Mosatarom) were prepared from Rice Research Institute of Iran and used in greenhouse tests. Evaluation of resistance components showed that Pooya mutant variety was resistant and Mosatarom cultivar was susceptible. Biochemical analysis under control and inoculated conditions revealed that enzyme activities of catalase, peroxidase, polyphenol oxidase in the Pooya mutant variety was more than, while TBARM index was lower than Mosatarom cultivar. According to the positive role of defense enzymes in controlling disease progression, Pooya mutant variety had better than its wild-type parent cultivar against blast disease due to the maximum defense enzyme activity.

کلیدواژه‌ها [English]

  • Defense enzymes
  • Mutant variety
  • Rice
  • Blast disease
  • Resistance

[1] M. Amanzadeh, A. Moumeni, M. Okhovat, M. Javan-Nikkhah, V. Khosravi, Evaluation of resistance of rice to leaf and panicle blast in Mazandaran province, JWSS-Isfahan University of Technology, 11 (2008) 209-219.

 [2] D.H. Long, F.N. Lee, D.O. TeBeest, Effect of nitrogen fertilization on disease progress of rice blast on susceptible and resistance cultivars, Plant Dis, 84 (2000) 403-409.

 [3] J.D. Paxton, J. Groth, Constraints on pathogens attacking plants, Crit. Rev. Plant Sci, 13 (1994) 77-95.

 [4] S.A.H. Mackerness, C.F. John, B. Jordan, B. Thomas, Early signaling components in ultraviolet-B responses: distinct roles for different reactive oxygen species and nitric oxide, FEBS Lett, 489 (2001) 237-242.

 [5] M. Maluszynski, K. Nichterlein, L. Vanzanten, B.S. Ahloowalia, Officially released mutant varieties- the FAO/IAEA Database, Mut. Breed. Rev, 12 (2000) 1-84.

 [6] A. Wani, M. Anis, Gamma Ray- and EMS-Induced Bold-Seeded High-Yielding mutants in chickpea (Cicer arietinum), Turk. J. Biol, 32 (2008) 1-5.

 [7] K.C. Lin, W.S. Jwo, N.N.P. Chandrika, T.M. Wu, M.H. Lai, C.S. Wang, C.Y. Hong, A rice mutant defective in antioxidant-defense system and sodium homeostasis possesses increased sensitivity to salt stress, Biologia Plantarum, 60 (2016) 86-94.

 [8] X. Chen, S. Fu1, P. Zhang, Z. Gu1, J. Liu1, Q. Qian, B. Ma, Proteomic analysis of a disease-resistance enhanced lesion mimic mutant spotted leaf 5 in rice, Rice, 6 (2013) 1-10.

[9] M. Chern, W. Bai, X. Chen, P.E. Canlas, P.C. Ronald, Reduced expression of glycolate oxidase leads to enhanced disease resistance in rice, Peer J, (2013) 1: e28, DOI 10.7717/peerj.28.

 [10] International Energy Agency (IAEA), Mutant Variety Database [Onvariety], Available at https://mvd.iaea.org (2004).

 [11] A.O. Mackill, J.M. Bonman, New hosts of Pyricularia oryzae, Plant Dis, 70 (1986) 123-129.

 [12] D.J. Mackill, J.M. Bonman, Inheritance of blast resistance in near-isogenic variety s of rice, Phytopathology, 82 (1992) 746-749.

 [13] International Rice Research Institute; IRRI, Standard Evaluation System (SES) for rice, IRRI, LosBanos, Laguna, Philippines (1996).

 [14] M.M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem, 72 (1976) 248-254.

 [15] H. Luck, Methods in Enzymatic Analysis, 2nd Ed, Academic Press, New York (1974).

 [16] B.C. In, S. Motomura, K. Inamoto, M. Doi, G. Mori, Multivariente analysis of relation between preharvest environmental factors, postharvest morphological and physiological factors and vase life of cut Asomi Red Roses, Japan. Soc. Hort. Sci, 76 (2007) 66-72.

 [17] A. Shatta, Z. EI-Shamei, Differentiation of eggplant (Solanummelongena L.) poly-phenoloxidase, laccase and peroxidase using selective substrates and inhibitors, Adv. Food Sci, 21 (1999) 79-83.

[18] D. Hagege, A. Nouvelot, J. Boucard, T. Gaspar, Malondialdehyde titration with thiobarbiturate in plant extracts: avoidance of pigment interference, Phytochem. Anal, 1 (1990) 86-89.

 

[19] SPSS Inc, SPSS for Windows, released version 16.0. SPSS Inc., Chicago, (2007).

 [20] R.N. Goodman, Z. Kiraly, K.P. Wood, Biochemical and physiological aspects of plant disease, University of Missouri Press, (1986) 433.

 [21] M.F. Abdel-Monaim, Improvement of biocontrol of damping-off and root rot/wilt of faba bean by salicylic acid and hydrogen peroxide, Mycobiology, 41 (2013) 47-55.

 [22] Y.Y. Du, P.C. Wang, J. Chen, C.P. Song, Comprehensive functional analysis of the catalase gene family in Arabidopsis thaliana, J. Integr. Plant Biol,50 (2008) 1318-1326.

 [23] F. Fric, Oxidative enzymes, In Heitefuss, R. and P. H. Williams (Eds.) Encyclopedia of plant physiology, Springer-verlag, Berlin, Hidelberg, New York, (1976) 617-631.

 [24] S.C. Fry, Cross-linking of matrix polymers in the growing cell walls of angiosperms, Ann. Rev. Plant Physiol, 37 (1986) 165-186.

 [25] M. Peng, J.A. Kuc, Peroxidase-generated hydrogen peroxide as a source of antifungal activity in virto and on tobacco leaf disks, Phytopathology, 82 (1992) 696-699.

 [26] J.M. Daly, P. Ludden, P.M. Seevers, Biochemical comparisons of resistance to wheat stem rust disease controlled by the Sr11 alleles, Physiol. plant pathol, 1 (1971) 397-407.

 [27] T. Kosuge, The role of phenolics in response to infection, Ann. Rev. Phytopathol, 7 (1969) 195-222.

 [28] Z. Hao, L. Wang, F. Huang, R. Tao, Expression of defense genes and antioxidant defense responses in rice resistance to neck blast at the preliminary heading stage and full heading stage, Plant Physiol. Biochem, 57 (2012) 222-230.

 [29] S. Navabpour, K. Morris, E. Harrison, S. Makerness, V. Buchanan-Wollaston, Expression of senescence-enhanced genes in response to oxidative stress, J. Exp. Bot, 54 (2003) 2285-2292.

 [30] S. Navabpour, S.S. Mirkarimi, A. Mazandarani, Evaluation of enzymatic and non-enzymatic defense mechanism in response to charcoal rot disease during growth stage in soybean, Crop Biotech, 5 (2013) 63-73.