مطالعه‌ی سینتیک، تعادل و ترمودینامیک جذب اورانیم (VI) از محلول‌های آبی به وسیله‌ی جاذب ترکیبی پلی‌وینیل الکل/ تترا اتیل اورتو سیلیکات با گروه عاملی مرکاپتو

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشکده مهندسی شیمی، دانشگاه تهران، صندوق پستی: 4563-11155، تهران ـ ایران

2 پژوهشکده‌ی چرخه‌ی سوخت هسته‌ای، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی ایران، صندوق پستی: 1339-14155، تهران ـ ایران

چکیده

جاذب ترکیبی پلی وینیل الکل/ تترا اتیل اورتو سیلیکات با گروه عاملی مرکاپتو به روش سل- ژل تهیه شد و کاربرد آن در جذب
یون­های اورانیم (VI) در فرایند ناپیوسته مورد بررسی قرار گرفت. گروه­های عاملی موجود در جاذب­های ترکیبی از طریق طیف­سنجی تبدیل فوریه­ی زیر قرمز (FTIR) تعیین شد. اثر پارامترهای مؤثر بر ظرفیت جذب یون­های اورانیم به وسیله­ی جاذب ترکیبی تهیه شده از قبیل درصد وزنی تترا اتیل اورتو سیلیکات و 3- مرکاپتوپروپیل تری متوکسی سیلان، pH، مقدار جاذب، زمان تماس، غلظت اولیه­ی محلول اورانیم و دمای محلول محاسبه شد. حداکثر میزان جذب اورانیم توسط جاذب 08/39 میلی­گرم بر ­گرم در دمای 45 درجه و pH برابر 5/4 به دست آمد که قابل قیاس با مقادیر اعلام شده توسط دیگر پژوهش­گران است. داده­های سینتیکی با سه مدل شبه مرتبه­ی اول، شبه مرتبه­ی دوم و دو نمایی تحلیل شدند. سه مدل هم­دمای فرندلیچ، لانگمویر و دوبین- رادشویچ برای توصیف داده­های تعادلی استفاده شد. محاسبه پارامترهای ترمودینامیکی نشان داد که فرایند جذب اورانیم به وسیله­ی جاذب ترکیبی تهیه شده گرماگیر و خودبه­خودی است. جاذب ترکیبی پلی وینیل الکل/ تترا اتیل اورتو سیلیکات اصلاح شده با گروه عاملی مرکاپتو به وسیله­ی نیتریک اسید 5/0 مولار هیدروکلریدریک اسید 1/0 مولار با نسبت حجمی یکسان احیا شد و در پنج چرخه­ی جذب- واجذب مورد استفاده قرار گرفت که تغییر چندانی در ظرفیت جذب مشاهده نشد.

کلیدواژه‌ها


عنوان مقاله [English]

Kinetic, Equilibrium and Thermodynamic Studies of Uranium (VI) Adsorption from Aqueous Solutions by PVA/TEOS Hybrid Adsorbent Functionalized with Mercapto Group

نویسندگان [English]

  • M Irani 1
  • A.R Keshtkar 2
  • M.A Mousavian 1
چکیده [English]

Poly (vinyl alcohol) / tetraethyl orthosilicate (PVA/TEOS) hybrid adsorbent modified with  3-mercaptopropyltrimethoxysilane (TMPTMS) was prepared by the sol-gel method, and its application for the adsorption of uranium ions from aqueous solutions in a batch sorption process was studied. The functional groups of the hybrid adsorbents were characterized by the FTIR analysis. The batch adsorption studies such as TEOS content, TMPTMS content, pH, adsorbent dosage, contact time, initial concentration and temperature were investigated. The maximum adsorption capacity of uranium ions was found to be 39.08 mg g-1 at pH of 4.5 and temperature of 25˚C. The kinetic data were analyzed by Pseudo-first-order, Pseudo-second-order and Double-exponential kinetic models. The Freundlich, Langmuir and Dubinin-Radushkevich isotherm models were applied to describe the equilibrium data. Thermodynamic parameters indicated that the uranium sorption onto the adsorbent was an endothermic and spontaneous process. The PVA/TEOS/TMPTMS hybrid adsorbent was regenerated by 0.5 M HNO3/0.1 M HCl in an equal ratio solution and the adpsorption capacity did not change remarkably after five sorption-desorption cycles.

کلیدواژه‌ها [English]

  • Hybrid Adsorbents
  • Mercapto Group
  • Uranium
  • Kinetics
  1. 1.    H. F. Walton, R. D. Rocklin, Ion exchange in analytical chemistry, CRC, Press, USA (1990).
 

  1. 2.    J. Charrier, M. Guibel, E. Roussy, J. Surgons, Le. Cloirec, Dynamic removal of uranium by chitason: influence of operating parameters. Water Sci. Technol. 34 (1996) 169-177.
 

  1. 3.    U. Ulosoy, S. Simsek, O. Ceyhem, Investigation for modification of poly acrylamide-bentonite by phytic acid and its usability in Fe3+, Zn2+ and UO22+ adsorption. Adsorption, 9 (2003) 165-175.
 

  1. 4.    T. S. Anirudhan, L. Divya, P. S. Suchithra, Kinetic and equilibrium characterization of uranium (VI) adsorption onto carboxylate-functionalized poly(hydroxyethylmethacrylate) grafted lignocellulisics. J. Environ. Manage, 90 (2009) 549-560.
 

  1. 5.    A-C. Chao, Preparation of porous chitosan/GPTMS hybrid membrane and its application in affinity sorption for tyrosinase purification with Agaricus bisporus. J. Memb. Sci. 311 (2008) 306-318.
 

  1. 6.    H-C. Chiua, C-H. Liua, S-C. Chenb, S-Y. Suena, Adsorptive removal of anionic dye by inorganic–organic hybrid anion-exchange membranes, J. Memb. Sci. 337 (2009) 282–290.
 

  1. 7.    C. J. Brinker, G. W. Schere, In Sol-Gel science, the physics and chemistry of Sol-Gel processing. New York, Academic Press (1990).
 

  1. 8.    X. Xue, F. Li, Removal of Cu from aqueous solution by adsorption onto functionalized SBA-16 mesoporous silica, Micropore. Mesopore. Mater, 116 (2008) 116-122.
 

  1. 9.    B. Lee, Y. Kim, Y. Lee, J. Yi, Synthesis of functionalized porous silica via templating method as heavy metal ion adsorbents, the introduction of surface hydrophilicity onto the surface of adsorbents, Micropore. Mesopore. Mater, 50 (2001) 77-90.
 

  1. 10.  J. Aguado, J. M. Arsuaga, A. Arencibia, M. Lindo, V. Gascón, Aqueous heavy metals removal by adsorption on amine-functionalized mesoporous silica, J. Hazard. Mater, 163 (2009) 213–221.
 

  1. 11.  A. Bandyopadhay, M. D. Sarkar, A. K. Bhowmick, Poly(vinyl alcohol)/silica hybrid nanocomposites by sol-gel technique: Synthesis and properties, J. Mater. Sci. 40 (2005) 5233– 5241.
  2. 12.  M. Amjadi, S. Rowshanzamir, S. J. Peighambardoust, M. G. Hosseini, M. H. Eikani, Investigation of physical properties and cell performance of Nafion/TiO2 nanocomposite membranes for high temperature PEM fuel cells. Int. J. Hydrogen Energy, 35 (2010) 9252–9260.
 

  1. 13.  A. Sari, M. Tuzen, Kinetic and equilibrium studies of biosorption of Pb(II) and Cd(II) from aqueous solution by macrofungus (Amantia rubescens) biomass, J. Hazard. Mater, 164 (2009) 1004-1011.
 

  1. 14.  Y. S. Ho, G. McKay, Pseudo-second-order model for sorption processes, Process Biochem. 34 (1999) 451-465.
 

  1. 15.  N. Chiron, R. Guilet, E. Deydar, Adsorption of Cu(II) and Pb(II) onto a grafted silica, isotherms and kinetic models, Water Res. 37 (2003) 3079-3086.
 

  1. 16.  C. Kutahyal, M. Eral, Selective adsorption of uranium from aqueous solutions using activated carbon prepared from charcoal by chemical activation, Sep. Purif. Technol. 40 (2004) 109–114.
 

  1. 17.  K. Stamberg, K. A. Venkatesan, P. R. V. Rao, Surface complexation modeling of uranyl ion sorption on mesoporous silica, Colloids Surf. A: Physicochem. Eng. Aspects, 221 (2003) 109–162.
 

  1. 18.  S. Aytas, S. Akyil, M. A. A. Aslani, U. Aytekin, Removal of uranium from aqueous solutions by diatomite (Kieselguhr), J. Radioanal. Nucl. Chem. 240 (1999) 973–976.
 

  1. 19.  K. Vidya, N. M. Gupta, P. Selvam, Influence of pH on the adsorption behavior of uranyl ions in mesoporous MCM-41 and MCM-48 molecular sieves, Mater. Res. Bull. 39 (2004) 2035–2048.
 

  1. 20.  E. R. Sylwester, E. A. Hudson, P. G. Allen, The structure of uranium (VI) sorption complexes on silica, alumina, and montmorillonite. Geochimica et Cosmochimica Acta, 64 (2000) 2431-2438.
 

  1. 21.  M. Sprynskyya, T. Kowalkowski, H. Tutu, E. M. Cukrowska, B. Buszewski, Adsorption performance of talc for uranium removal from aqueous solution, Chem. Eng. J, 171 (2011) 1185-1193.
 

  1. 22.  R. Han, W. Zou, Y. Wang, L. Zhu, Removal of uranium(VI) from aqueous solutions by manganese oxide coated zeolite: discussion of adsorption isotherms and pH effect, J. Environ. Radioact. 93 (2007) 127–143.