نوع مقاله : مقاله پژوهشی

نویسندگان

1 مرکز پژوهش های کاربردی سازمان زمین شناسی و اکتشافات معدنی کشور، صندوق پستی: 3174674841، البرزـ ایران

2 گروه زمین شناسی، دانشگاه آزاد اسلامی واحد تهران شمال، صندوق پستی: 1667934783، تهران ـ ایران

3 پژوهشکده ی چرخه ی سوخت هسته ای، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی ایران، صندوق پستی: 8486-11365، تهران ـ ایران

4 گروه مهندسی اکتشاف معدن، دانشگاه آزاد اسلامی واحد تهران جنوب، صندوق پستی: 4435-11365، تهران ـ ایران

چکیده

محدوده‌ی مورد مطالعه در آنومالی پنج ساغند، در منطقه‌ی ساختاری ایران مرکزی قرار دارد. کانی‌سازی اورانیم، توریم و عناصر خاکی نادر در منطقه‌ی ساغند، به طور عمده از نوع گرمابی و متاسوماتیت وابسته به توده‌های نفوذی منطقه و مرتبط با عناصر پرتوزا است. جداسازی‌ ناهنجاری از زمینه یکی از مهم‌ترین و کلیدی‌ترین مرحله‌ها ‌در اکتشافات ‌ژئوشیمیایی است. روش‌های مختلفی برای جداسازی و تشخیص منطقه‌های ناهنجار از زمینه وجود دارد که عبارت‌اند از روش‌های آماری ساده تا روش‌های پیچیده‌ی فرکتالی. روش‌های فرکتالی به دلایلی چون استفاده از تمام داده‌ها، در نظر گرفتن پراکندگی فضایی آن‌ها اخیراً کاربرد مؤثری در بررسی‌های سطحی زمین‌شناسی و ژئوشیمیایی پیدا کرده‌‌اند. در منطقه‌ی ساغند، عناصر خاکی نادر هم‌بستگی مثبت زیادی با کانی‌سازی عناصر پرتوزا (اورانیم و توریم) نشان می‌دهند. جداسازی ناهنجاری‌‌های ژئوشیمیایی عناصر خاکی نادر از زمینه (از 15 عنصر مورد تجزیه‌ی عناصر خاکی نادر تنها عناصر Ce، Y، Dy، Gd، La در این مقاله مورد بررسی قرار گرفته‌اند) با کمک روش فرکتالی عیار- مساحت، بر روی داده‌های لیتوژئوشیمیایی (91 نمونه) در محدوده‌ی ساغند انجام شده است. در این روش، نمودار‌های Log-Log ترسیم، ناهنجاری‌ها مشخص و جامعه‌های کانی‌سازی تفکیک و سپس نقشه‌های ناهنجاری عناصر تهیه و مناطق امیدبخش معرفی شدند. در نهایت، براساس نتایج به دست آمده، مشخص شد که ناهنجاری‌های عناصر خاکی نادر، به ترتیب اولویت در سه بخش غربی و جنوب غربی، مرکزی و جنوبی هستند. بخش مرکزی در واحدهای متاسوماتیت واقع شده و با دگرسانی‌‌های اپیدوتی و کلریتی مرتبط است و بخش جنوبی منطقه، در مرز بین واحدهای متاسوماتیت و دایک‌های ‌بازیک ‌میکرودیوریت واقع شده که مرتبط با دگرسانی ‌اپیدوتی هستند. ناهنجاری‌های ‌شدیدتر، ‌در غرب ‌منطقه‌ در واحدهای ‌متاسوماتیت، ‌میکرودیوریت‌های پورفیری و سنگ‌های آتشفشانی اسیدی متاسوماتیسم شده، با دگرسانی اپیدوتی مرتبط بودند. از بررسی نقشه‌های ژئوشیمیایی با زمین‌شناسی مشخص شد که کانی‌سازی عناصر پرتوزا در منطقه از نوع متاسوماتیت است، که سنگ‌های اولیه‌ی منطقه، شامل واحدهای سنگی آذرآواری، دیابازها، داسیت پورفیری و گابرو را تحت تأثیر متاسوماتیسم قرار داده و انواع سنگ‌های اصلی منطقه، شامل آمفیبول متاسوماتیت، آمفیبول- آلبیت متاسوماتیت، آمفیبول- کوارتز- فلدسپات متاسوماتیت، آمفیبول- فلدسپار- اپیدوت متاسوماتیت و آمفیبول- بیوتیت- ارتوز- تالک- کلریت- اپیدوت متاسوماتیت را در منطقه به وجود آورده است؛ عناصر خاکی نادر به صورت کمپلکس با عناصر پرتوزا در کانی‌های اورانیم و توریم‌دار (اورانینیت و دیویدیت) ظاهر می‌شود.
 
 

کلیدواژه‌ها

عنوان مقاله [English]

Separation of geochemical anomalies of rare earth elements by concentration-area fractal model in Anomaly No. 5 of Saghand (Central Iran)

نویسندگان [English]

  • Masoumeh Khalajmasoumi 1
  • Mohammad Lotfi 2
  • Ayoub Memar kochebagh 3
  • peiman Afzal 4
  • Behnam Sadeghi 4
  • Ahmad Khakzad 2

چکیده [English]

The studied area is situated in the Central Iran structural zone. Uranim, thorioum and REEs (Rare Earth Elements) mineralizations are hydrothermal type and metasomatic related to intrusive areas. Recognition of a geochemical anomaly from background is a basic problem in geochemical exploration. There are different kinds of methods that assist to delineate geochemical anomalies from background, ranged from the simple statistical methods to complex fractal ones. The fractal models are applicable in this branch (geochemistry) because of using all data and considering their special distributions and their new effective usage of surface geological and geochemical studies. In Saghand area, REEs show a high positive correlation with radioactive elements (uranium and thorium). Recognition of REEs’ geochemical anomalies from background was achieved using the concentration- area (C-A) fractal model by lithogeochemical data (91 samples) in the study area. (we have analyzed 15 elements and provided Ce, Y, Dy, Gd and La elements’ maps in this paper). In this method, the log-log plots of REEs were generated and their theresholds and mineralization populations were identified. The map of lithogeochemical anomalies were subsequently drawn and eventually the promising areas were identified. Furthermore, high intensive REEs geochemical anomalies were discriminated in western, NW, central, and southern parts of the study area. The REEs moderate anomalies are located in the metasomatic unitis associated with epidote and chlorite alterations in the central part of the study area. The southern anomalies of the region are located on the border where the basic dykes associated with the epidotic alterations are between metasomatic units and microdioritic ones. High intensive anomalies which are situated in the west of the studied area occurred within the metasomatic, porphyry microdioritic, and acidic volcanic rocks associated with the epidote alterations. The combinations of the geochemical and geological maps were found indicating that the radioactive element mineralization was of the metasomatite type and metasomatism was more than amphibolization and albitization. The primary rocks contain pyroclastic, diabase, porphyry dacite and gabbro has affected metasomatism and the main rock types created in the area include amphibole metasomatite, amphibole-albit metasomatite, albite metasomatite, amphibole-quartz- feldspar metasomatite, amphibole-feldspar-epidote metasomatite and amphibole-biotite-talc-chlorite-epidote metasomatite. The REEs appear as a complex with the radioactive elements in U and Th minerals (uraninite and davidite).
 
 

کلیدواژه‌ها [English]

  • Rare earth elements (REEs)
  • Fractal modeling
  • Concentration-area (C-A)
  • Anomaly No 5 of Saghand
  • Central Iran
[1] A. Khakzad, Metallogeny and exploration of rare metals, Pelk Publication, (2009) 215.
[2] Q. Cheng, F.P. Agterberg, S.B. Ballantyne, The separation of geochemical anomalies from background by fractal methods, Journal of Geochemical Exploration, 51 (1994) 109-130.
[3] Davis, C. John, Statistics and data analysis in geology, 3th ed. John Wiley & Sons Inc, New York (2002).
[4] C. Li, T. Ma, J. Shi, Application of a fractal method relating concentrations and distances for separation of geochemical anomalies from background, Journal of Geochemical Exploration, 77 (2003) 167-175.
[5] B.B. Mandelbrot, The fractal geometry of nature (update and augmented edition), Freeman, New York (1983) 468.
[6] B. Bolviken, P.R. Stokke, J. Feder, T. Jossang, The fractal nature of geochemical landscapes, Journal of Geochemical Exploration, 43 (1992) 91-109.
[7] P. Afzal, A. Khakzad, P. Moarefvand, N. Rashidnejad Omran, B. Esfandiari, Y. Fadakar Alghalandis, Geochemical anomaly separation by multifractal modeling in Kahang (Gor Gor) porphyry system, Central Iran, Journal of Geochemical Exploration, 104 (2010) 34-46.
[8] P. Afzal, Y. FadakarAlghalandis, A. Khakzad, P. Moarefvand, N. Rashidnejad Omran, Delineation of mineralization zones in porphyry Cu deposits by fractal concentration–volume modeling, Journal of Geochemical Exploration, 108 (2011) 220-232.
[9] Z. Wang, Q. Cheng, D. Xu, Y. Dong, Fractal modeling of sphalerite banding in jinding Pb–Zn deposit, Yunnan, Southwestern China, Journal of China University of Geosciences, 19 (1) (2008) 77–84.
[10] E.J.M. Carranza, Geochemical anomaly and mineral prospectivity mapping in GIS, Handbook of Exploration and Environmental Geochemistry, 11 (2008) 351.
[11] E.J.M. Carranza, E. Owusu, M. Hale, Mapping of prospectivity and estimation of number of undiscovered prospects for lode–gold, Southwestern Ashanti Belt, Ghana, Mineralium Deposita, 44 (8) (2009) 915-938.
[12] B. Sadeghi, P. Moarefvand, P. Afzal, A.B. Yasrebi, L. Daneshvar Saein, Application of fractal models to outline mineralized zones in the Zaghia iron ore deposit, Central Iran. J Geochem Explor, 122 (2012) 9–19.
[13] S. Hassanpour, P. Afzal, Application of concentration-number (CN) multifractal modelling for geochemical anomaly separation in Haftcheshmeh porphyry system, NW Iran. Arab J Geosci 6 (2013) 957–970. doi:10.1007/s12517-011-0396-2.
[14] S.M. Heidari, M. Ghaderi, P. Afzal, Delineating mineralized phases based on lithogeochemical data using multifractal model in Touzlar epithermal Au-Ag (Cu) deposit, NW Iran., Appl Geochem, 31 (2013) 119–132.
[15] A. Nazarpour, N.R. Omran, G.R. Paydar, Application of multifractal models to identify geochemical anomalies in Zarshuran Au deposit, NW Iran. Arab J Geosci, (2013) 1–13, doi: 10.1007/s12517-013-1183-z.
[16] P. Afzal, Dimensional fractal methods for the separation zones of porphyry deposits, Science and Research Branch, Islamic Azad University (IAU), Tehran, Iran, (2010).
[17] D.L. Turcotte, A fractal approach to the relationship between ore grade and tonnage, Economic Geology, 18 (1986) 1525–1532.
[18] X. Meng, P. Zhao, Fractal method for statistical analysis of geological data, Chinese Journal of Geosciences, 2 (1991) 207-211.
[19] F.P. Agterberg, Calculation of the variance of mean values for blocks in regional resource evaluation studies, Nonrenewable Resources, 2 (1993) 312–324.
[20] Z. Mao, S. Peng, J. Lai, Y. Shao, B. Yang, Fractal study of geochemical prospecting data in south area of Fenghuanshan copper deposit, Tongling Anhui. Journal of Earth Sciences and Environment, 26 (4) (2004) 11–14.
[21] Zuo, Renguang, Cheng, Qiuming, Xia, Qinglin, Application of fractal models to characterization of vertical distribution of geochemical element concentration, Journal of Geochemical Exploration, 102(1) (2009) 37-43.
[22] B. Samani, Y. Talezadeh Lari, Report of the first phase of uranium exploration project in Saghand area, Report No 225 (1988).
[23] B. Samani, Phenomena of Geology and mineralogy of uranium in Saghand (Central Iran), Report of Atomic Energy Organization, Exploration Site, No 220.
[24] Haghipour, Petrology and tectonic activity of the pre-cambrian sediments of Biabanak and Bafgh regions of Central Iran, Geol. Surv. Iran., Rep. 34 (1974) 403.
[25] J. Ramezani, R.D. Tucker, The Saghand Region, Central Iran: U-Pb Geochronology, Petrogenesis and Implications for Gondwana Tectonics, American Journal of Science, 303 (1995) 622-655.
[26] J. Ramezani, R.D. Tucker, The saghand region, central Iran: U-Pb geochronology, petrogenesis and implications for gondwana tectonics, Journal of Science, 303 (2003) 622-665.
[27] B. Samani, Metallogeny of the Precambrian in Iran, Precambrian Research, 39 (1988) 85-106.
[28] B. Samani, Metallogeny of rare earth element in metallogenic cycle Pan African Central Iran, 20 (1378) 15-21.
[29] Q. Cheng, Multifractal theory and geochemical element distribution pattern, Earth Science–Journal of China University of Geosciences, 25 (3) (2000) 311–318.
[30] Q. Cheng, Quantifying the generalized self–similarity of spatial patterns for mineral resources assessment, Earth Science–Journal of China University of Geosciences, 29 (6) (2004) 733-743.
[31] Q. Cheng, Singularity–generalized self–similarity–fractal spectrum (3S) models, Earth Science–Journal of China University of Geosciences, 31 (3) (2006) 337–348.
[32] Q. Cheng, GIS–Based multifractal anomaly analysis for prediction of mineralization and mineral deposits, In: Harris, J., ed., GIS Applications in Earth Sciences, Geological Association of Canada Special Paper, (2006a) 289-300.
[33] C.J.G. Evertz, B.B. Mandelbrot, Multifractal measures, Appendix B in: H.–O. Peitgen, H. Jurgens and D. Saupe, Chaos and Fractals, Springer–Verlag, New York, (1992) 922-953.
[34] T.C. Halsey, M.H. Jensen, L.P. Kadanoff, I. Procaccia, B.I. Shraiman, Fractal measures and their singularities: the characterization of strange sets, Phys Rev A, 33 (1986) 1141–1151.
[35] R. Zuo, E.J.M. Carranza, Q. Cheng, Fractal/multifractal modelling of geochemic exploration data, Journal of Geochemical Exploration, 122 (2012) 1–3.
[36] H. Jafari, Uranium anomalies introducing in Deh Seyahan in 1:250000 Sirjan, land and resources journal (Lahijan), 1 (2009).
[37] J.R. Harris, L. Wilkinson, E. Grunsky, K. Heather, J. Ayer, Techniques for analysis and visualization of lithogeochemical data with applications to the Swayze Greenstone Belt, Ontario, Journal of Geochemical Exploration, 67 (1999) 301–334.
[38] J.P. Chiles, Fractal and geostatistical methods for modeling of a fracture network, Math. Geol., 20 (1988) 631–654.
[39] G.F. Bonham–Carter, F.P. Agterberg, D.F. Wright, Integration of geological datasets for gold exploration in Nova Scotia, Photogramm. Remote sensing, 54 (1988) 1585–1592.
[40] A.A. Hasanipak, M. Sharafodin, Exploratory data analysis, Tehran University, (1384) 987.
[41] A.A. Hasanipak, Geostatistic, Tehran University, Third Edition, (1392) 328.
[42] A. Ziazarifi, Regional exploration of uranium in 1:50000 Tark and Onligh (East Azarbayejan), phd thesis, Islamic Azad University, Science and Research Branch, Tehran, Chapter III (2008).
[43] A. Memar Kuche Bagh, Mineralogy and Petrochemistry of a part of Saghand Area central Iran, Department of Geology St. XAVIER S College Bombay (1991).
[44] N. Nakamura, Determination of REE, Ba, Mg, Na, and K in carbonaceous and ordinary chondrites, Geochimica et Cosmochimica Acta, 38 (1974) 757-775.