نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشکده‌ی فیزیک، دانشگاه کاشان، صندوق پستی: 53153-87317، کاشان ـ ایران 2. پژوهشکده‌ی نانو، دانشگاه کاشان، صندوق پستی: 53153-87317، کاشان ـ ایران

2 دانشکده‌ی فیزیک، دانشگاه کاشان، صندوق پستی: 53153-87317، کاشان ـ ایران

3 2. پژوهشکده‌ی نانو، دانشگاه کاشان، صندوق پستی: 53153-87317، کاشان ـ ایران

چکیده

پاسخ گرمالیانی انتقال یافته­ی نوری (PTTL) دزیمترC:3O2α-Al (500-TLD) با مدل نظری توصیف­کننده­ی این پدیده برازش شد. بررسی نتیجه­ها نشان داد که سطح زیر منحنی تابشی (پاسخ) گرمالیانی انتقال یافته­ی نوری تنها به تعداد حامل­های بار واقع در دام­های فعال وابسته است و تعداد دام­های فعال، آن را تحت تأثیر قرار نمی­دهد. علاوه بر این، حالت­های به دام اندازنده­ی عمیق در این ماده­ی گرمالیان در دماهای بالا خالی می­شوند و­ امکان تعیین پارامترهای سینتیکی آن­ها به صورت مستقیم وجود ندارد. چون با افزایش دما قله­های منحنی تابشی تحت تأثیر اثر فرونشانی گرمایی (کاهش در منحنی تابشی گرمالیانی در دماهای افزایش یافته به دلیل گذارهای غیرتابشی) قرار می­گیرند. در این مطالعه، پاسخ­های دزیمتر گرمالیانی انتقال یافته­ی نوری تجربی به دست آمده به ازای مقدارهای مختلف دز جذب شده برای 500-TLD با مدل­های نظری مربوطه برازش شد. بنابراین پارامترهای سینتیکی دام­های عمیق از مقایسه­ی پاسخ­های ارایه شده به وسیله­ی مدل با نتایج تجربی آن به دست آمد. منحنی تابشی گرمالیانی انتقال یافته­ی نوری دزیمتر 500-TLD با توجه به کاربردی که در برآورد مجدد دز جذب شده، دزیمتری فرابنفش (UV) و عمرسنجی دارد، حایز اهمیت است.

کلیدواژه‌ها

عنوان مقاله [English]

The Study on the Kinetic Parameters of Deep Traps of α-Al2O3:C (TLD-500) Dosimeter by Comparing Experimental Photo-Transferred Thermoluminescence Response with the Theoretical Model

نویسندگان [English]

  • S Harooni 1
  • M Zahedifar
  • A Ramazani-Moghaddam-Arani 2
  • E Sadeghi 1
  • M Mehrabi 3

چکیده [English]

Photo-transferred thermoluminescence (PTTL) response of α-Al2O3:C (TLD-500) was fitted to the theoretical PTTL model. It was found that, the area under the PTTL glow curve depends only on the population of charge carriers in the active traps and the numbers of active traps does not affect the PTTL glow curve area. Further more, the deep trapping states in this phosphor depopulate at high temperatures and it is not possible to obtain their kinetic parameters directly, as by increasing the temperature, the peaks in the glow curve are affected by the thermal quenching effect (decrease in TL glow curve at increased temperature due to non-radiative transitions). In this work, the experimental PTTL responses obtained for different absorbed doses were fitted to the theoretical PTTL ones. Thus, the kinetic parameters of deep traps were obtained by comparing the responses generated by the model with the experimental results. The PTTL glow curve of TLD-500 is of importance since it can be used to re-estimate the absorbed dose, UV dosimetry and dating.

کلیدواژه‌ها [English]

  • Photo-Transferred Thermoluminescence
  • Deep Traps
  • Kinetic Parameters
  • TLD-500 α-Al2O3:C Dosimeter
[1] S.­A. Petrov, I.K. Bailiff, Thermal quenching and the initial rise technique of trap depth evaluation, J. Lumin., 65 (1995) 289-291.
 
[2] A.J.J. Bos, Theory of thermoluminescence, Radiat. Meas., 41 (2007) S45-S56.
 
[3] M.S. Akselrod, V.S. Kortov, Thermoluminescent and exoemission properties of new high-sensitivity TLD α-AL2O3:C crystals, Radiat. Prot. Dosim., 33, 1-4 (1990) 123-126.
 
[4] A. Sas-Bieniarz, M. Budzanowski, A. Bubak, R. Kopec, Application of PTTL Method for dose reassessment in extremity dosimetry, Radiat. Prot. Dosim., 170, 1-4 (2016) 204-207.
 
[5] S. Miljanic, J. Bibic, S. Blagus, B. Mihaljevic, B. Vekic, Dose reassessment of LiF:Mg, Ti detectors in the mixed fields, Radiat. Meas., 46 (2011) 1586-1589.
 
[6] D.A. Sono, S.W.S. Mckeever, Phototransferred thermoluminescence for use in UVB dosimetry, Radiat. Prot. Dosim., 100, 1-4 (2002) 309-312.
 
[7] A.G. Wintle, Luminescence dating: laboratory procedures and protocols, Radiat. Meas., 27, 5 (1997) 769-817.
 
[8] V.S. Kortov, I.I. Milman, S.V. Nikiforov, The effect of deep traps on the main features of thermoluminescence in dosimetric α-AL2O3 crystals, Radiat. Prot. Dosim., 84, 1-4 (1999) 35–38.
 
[9] V.E. Pelenyov, V.S. Kortov, I.I. Milman, The interaction of deep traps in anion-defective α-AL2O3. Radiat. Meas., 33, 5 (2001) 629–631.
 
[10] V.S. Kortov, I.I. Milman, S.V. Nikiforov, E.V. Moiseykin, S.V. Kondrashov, Nonlinear dose dependence in TLD-500 detectors resulting from interactive interference of traps, Radiat. Meas., 42, 4 (2007) 590-593.
 
[11] E.G. Yukihara, V.H. Whitley, J.C. Polf, D.M. Klein, S.W.S. McKeever, A.E. Akselrod, M.S. Akselrod, The effects of deep trap population on the thermoluminescence of AL2O3:C, Radiat. Meas., 37, 6 (2003) 627–638.
 
[12] C.S. Alexander, S.W.S. McKeever, Phototransferred thermoluminescence, J. Phys. D: Appl. Phys., 31, 20 (1998) 2908–2920.
 
[13] M.S. Akselrod, E. Gorelova, Deep traps in highly sensitive α-AL2O3:C TLD crystals, Nucl. Tracks Radiat. Meas., 21, 1 (1993) 143-146.
 
[14] M.S. Akselrod, V.S. Kortov, E.A. Gorelova, Preparation and properties of α-AL2O3:C, Radiat. Prot. Dosim., 47, 1-4 (1993) 159-164.
 
[15] G.I. Dallas, G.S. Polymeris, E.C. Stefanaki, D. Afouxenidis, N.C. Tsirliganis, G. Kitis, Sample dependent correlation between TL and LM-OSL in Al2O3:C, Radiat. Meas., 43, 2-6 (2008) 335-340.
 
[16] A.N. Yazici, S. Solak, Z. Ozturk, M. Topaksu, Z. Yegingil, The analysis of dosimetric thermoluminescent glow peak of α-AL2O3:C  after different dose levels by β-irradiation, J. Phys. D: Appl. Phys., 36, 2 (2003) 181-191.
 
[17] M. Zahedifar, L. Eshraghi, E. Sadeghi, Thermoluminescence kinetics analysis of α-AL2O3:C at different dose levels and populations of trapping states and a model for its dose response. Radiat. Meas., 47, 10 (2012) 957-964.
 
[18] V. Pagonis, R. Chen, J.L. Lawless, A quantitative kinetic model for AL2O3:C: TL response to ionizing radiation,Radiat. Meas., 42, 2 (2007) 198–204.
 
[19] H.G. Balian, N.W. Eddy, Figure of merit (FOM), an improved criterion over the normalized chi-squared test for assessing goodness of fit of gamma ray spectra peaks, Nucl. Instr. and Meth., 145, 2 (1977) 389–395.