مطالعه قاعده‌مندی‌های ترمودینامیکی آب سنگین با استفاده از مدل‌های واندروالس و دیتریسی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 پژوهشکده‌ی مواد و سوخت هسته‌ای، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی ایران، صندوق پستی: 8486-11365، تهران ـ ایران

2 گروه شیمی، دانشگاه پیام نور، صندوق پستی: 4561934367، ابهر ـ ایران

چکیده

آب سنگین دارای دو اتم هیدروژن سنگین یا دوتریم است. خواص شیمیایی آب سنگین شبیه آب سبک است اما خواص فیزیکی، ترمودینامیکی و هسته­ای آن­ها متفاوت هستند. از طرف دیگر، معادله­ی حالت، ابزار مهم و مناسبی برای بررسی رفتار ترموفیزیکی مواد و پیش­بینی
آن­ها در شرایط مختلف از نظر فشار، دما و مقدار است. در حال حاضر معادله­های حالت مختلفی وجود دارند که می­توان آن­ها را به­طور کلی
به­صورت نظری، تجربی و نیمه­تجربی دسته­بندی کرد.  این کار پژوهشی با توجه به اهمیت آب سنگین و نقش آن در پژوهش­های مختلف به­ویژه پژوهش­های هسته­ای و کاربرد این ماده در پزشکی و صنعت، بر آن است که قاعده­مندی­های ترمودینامیکی این ماده را با استفاده از معادله­های حالت نیمه­تجربی مختلف براساس مدل­های واندروالس و دیتریسی به­دست آورد. داده­های به­دست آمده از محاسبه­ها و مقایسه­ی آن­ها با داده­های تجربی مشخص نمود که معادله­های حالت به­کار رفته، به­طور کیفی قاعده­مندی­های ترمودینامیکی آب سنگین را به­خوبی پیش­بینی می­کنند اما رفتار کمّی آن­ها متفاوت است.

کلیدواژه‌ها


عنوان مقاله [English]

The Study of the Thermodynamic Regularities of Heavy Water Using Van Der Waals and Dieterici Models

نویسندگان [English]

  • M Najafi 1
  • H Kermanian 2
چکیده [English]

Heavy water has two heavy hydrogen atoms or deuterium. Chemical properties of heavy water are similar to light water, but their physical, thermodynamic, and nuclear properties are different. On the other hand, the Equation of State (EOS) is an important and suitable tool for studying the thermophysical behavior of materials and predicting them in different conditions in terms of pressure, temperature and amount. At present, there are different equations of state that can be categorized as theoreticall, empericall and semi-emperical. Regarding to the importance of heavy water and its role in various researches, in particular nuclear researches, and the application of this material in medicine and industry, the thermodynamic regularities of this material have been studied in this research using different semi-experimental equations of state based on van der Waals and Dieterici models. The comparison between calculations with the experimental data showed that the equations of state predicted the thermodynamic regularities of heavy water well qualitatively, but their quantitative behavior is different.

کلیدواژه‌ها [English]

  • Heavy Water
  • thermodynamic regularities
  • van der Waals model
  • Dieterici model

 

[1] J.A. Ayres, C.A. Trilling, Heavy water and organic fluids as neutron moderator and reflector materials, Nuclear Engineering and Design,  14 (1971) 363-389.

 

[2] J. Kestin, J.V. Sengers, B. Kamgar-Parsi, J.M.H. Levelt Sengers, Thermophysical Properties of Fluid , J. Phys. Chem. Ref. Data, 13 (1984) 601-609.

 

[3] N.G. Polikhronidi, I.M. Abdulagatov, J.W. Magee, G.V. Stepanov, Isochoric Heat Capacity Measurements for Heavy Water Near the Critical Point, International Journal of Thermophysics, 23 (2002) 745-770.

 

[4] Heavy Water Reactors: Status and projected development, Technical Report Series, IAEA, (2002) 1-160.

 

[5] Y.S. Wei and R.J. Sadus, Equations of State for the Calculation of Fluid-Phase Equilibria, 46 (2000) 169-196.

 

[6] A. Maghari, L. Hosseinzadeh-Shahri, Evaluation of the performance of cubic equations of state in predicting the regularities in dense fluids, Fluid Phase Equilibria, 206 (2003) 287–311.

 

[7] J.S. Rowlinson, J.D. Van Der Waals, On the Continuity of the Gaseous and Liquid States, Elsevier, Amsterdam (1988) 170.

 

[8] O. Redlich, J.N.S. Kwong, On the Thermodynamics of  Solutions: An Equation of State, Fugacities of Gaseous Solutions, Chem. Rev., 233 (1949) 171.

 

[9] N.F. Carnahan, K.E. Starling, Intermolecular Repulsions and the Equation of State for Fluids, AIChE J, 1184 (1972) 171.

 

[10] M.M. Abbott, Cubic Equation of State: An Interpretive Review, Equations of State in Engineering and Research, Adv. in Chemistry Ser., 182, K.C. Chao and R.L. Robinson eds., American Chemical Society, Washington, DC, (1979).

 

[11] D.Y. Peng, D.B. Robinson, A New Two-Constant Equation of State, Ind. Eng. Chem. Fundam, 59 (1976) 171.

 

[12] G. Soave, Equilibrium Constants from a Modified Redlich-Kwong Equation of State, Chem. Eng. Sci., 27 (1972) 171.

 

[13] C. Dieterici, Ann. Phys. Chem. Wiedemanns Ann., 685 (1899) 1460.

 

[14] R.J. Sadus, Equations of state for fluids: The Dieterici approach revisited, J. Chem. Phys, 115 (2001) 1460.

 

[15] G.A. Parsafar, Statistical Thermodynamics; Theories and Applications, Esfahan University of Technology, Iran, Second Edition, (2009).

 

[16] I. Levin, Physical chemistry, sixth edition, Fatemi Publishing, (2010).

 

[17] NIST Chemistry WebBook, www.nist.gov.