نوع مقاله : مقاله فنی

نویسندگان

1 گروه فیزیک، دانشکده علوم، دانشگاه زنجان، صندوق پستی: 3486-11365، زنجان ـ ایران

2 پژوهشکده‌ی کشاورزی هسته‌ای، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی ایران، صندوق پستی: 498-31485، کرج ـ ایران

چکیده

یک روش مناسب و معمول برای تولید نیتروژن-13 استفاده از واکنش N13O(p,α)16 است. ماده‌ی هدف برای تولید نیتروژن-13 آب خالص است. آزمایش اول با بمباران پروتونی هدف آب خالص با بدنه‌ی نقره که سطح داخلی آن با طلا آب‌کاری شده بود انجام شد. اما به علت واکنش طلا با آمونیاک نشان‌دار شده با نیتروژن-13 که نقطه‌ی ضعف این لایه‌ی داخلی محسوب می‌شود، بدنه-ی هدف مایع از جنس نیوبیم طراحی و ساخته شد. مهم‌ترین ویژگی نیوبیم مقاومت بالای شیمیایی این فلز است. رادیونوکلید
نیتروژن-13 به وسیله‌ی باریکه‌ای از پروتون‌ها به انرژی 5/17 مگاالکترون ولت و با جریان 12 میکروآمپر و در مدت زمان 20 دقیقه تولید شد. بهره‌ی تولید در حدود 5/84 میلی‌کوری بر میکروآمپر ساعت به دست آمد.
 

کلیدواژه‌ها

عنوان مقاله [English]

Production of nitrogen-13 labeled ammonia in liquid niobium target at the Karaj cyclotron

نویسندگان [English]

  • Shahrzad Fazli 1
  • Mohammad Mirzaei 2
  • Tayeb Kakavand 1
  • Ali Satari 2
  • Mohmmad Rahimi 2
  • Zohreh Abdi 1

چکیده [English]

A common and routine method for producing nitrogen-13 is 16O (p, α) 13N reaction, where nitrogen-13 is produced with the bombardment of O-16 through the induced proton, and is accompanied by emission of α-particles. Target material for N-13 production is pure water. The first experiment is carried out with a gold target. Because of the gold reaction with nitrogen-13, labeled ammonia (Au++n 13NH3=Au(13NH3)+n), a new liquid target made of niobium, was designed to overcom this drawback. One of the advantages of niobium element is its high chemical resistivity. The 13N radioisotope was produced at the Agricultural, Medical and Industrial Research School (AMIRS), where the target was irradiated with proton particles of 17.5 MeV energy and the current of 12 μA for 20 min. The yield of the radioisotope was about 84.5 mCi/μA h.
 

کلیدواژه‌ها [English]

  • Labeled ammonia
  • Nitrogen-13
  • Liquid target
  • Cyclotron
[1] S.M. Austin, A. Galonsky, J. Bortins, C.P. Wolf, A batch process for the production of 13N-labeled nitrogen gas, Nuclear Instruments and Methods, 126 (1975) 373-379.
[2] M.G. Straatman, A look at 13N and 15O in Radiopharmaceuticals, Int J Appl Radiat Isot, 28 (1977) 13-20.
[3] R.A. Ferrieri, A.P. Wolf, The chemistry of positron-emitting nucleogenic (hot) atoms with regard to preparation of labeled compounds of practical utility, Radiochimica Acta, 34 (1983) 69-83.
[4] S. Rojas, A. Martin, M.J. Arranz, D. Pareto, J. Purroy, Development of New Strategies for the Synthesis of Radiotracers Labeled with Short-Lived Isotopes: Application to 11C and 13N, Journal of Cerebral Blood Flow & Metabolism, 27(12) (2007) 1975-1986.
[5] M. Senda, K. Murata, H. Itoh, Y. Yonekura, K. Torizuka, Quantitative evaluation of regional pulmonary ventilation using PET and nitrogen-13 gas, J Nucl Med, 27, 2 (1986) 268-273.
[6] T.J. Carthy, C.S. Dence, S.W. Holmberg, J. Markham, D.P. Schuster, M.J. Welch, Inhaled [13N] nitric oxide: a positron emission tomography (PET) study, Nucl Med Biol, 23, 6 (1996) 773-777.
[7] H. Saji, D. Tsutsumi, Y. Kiso, S.A. Iimuma, J. Konishi, Synthesis and biological evaluation of a 13N-labeled opioid peptide, Int J Rad Appl Instrum, 19, 4 (1992) 455-460.
[8] M.G. Straatman, M.J. Welch, Enzymatic synthesis of nitrogen-13 labeled amino-acids Radiat, 56 (1973) 48-56.
[9] S. Filc-DeRicco, A.S. Gelbard, A.J. Cooper, K.C. Rosenspire, E. Nieves, Short-term metabolic fate of L-[13N] glutamate in the Walker 256 carcinosarcoma in vivo, Cancer Res, 50(16) (1990) 4839-4844.
[10] Y. Watanabe, K. Suzuki, H. Tsukada, S. Oka, O. Inoue, Synthesis of 13N labeled L-tyrosine, Acta Radiol Suppl, 376 (1991) 110-111.
[11] J.Z. Ginos, A.J. Cooper, V. Dhawan, J.C. Lai, D.A. Rottenberg, [13N] cisplatin PET to assess pharmacokinetics of intra-arterial versus intravenous chemotherapy for malignant brain tumors, J Nucl Med, 28(12) (1987) 1844-1852.
[12] D. Masuda, R. Nohara, N. Tamaki, M. Fujita, S. Sasayama, Evaluation of coronary blood flow reserve by 13N-NH3 positron emission computed tomography (PET) with dipyridamole in the treatment of hypertension with the ACE inhibitor (Cilazapril), Ann Nucl Med, 14(5) (2000) 353-360.
[13] M.E. Phelps, E.J. Hoffman, C. Raybound, Factors with affect cerebral uptake and retention of N-13NH3, Stroke, 8 (1977) 694-702.
[14] D. Masuda, R. Nohara, H. Inada, T. Hirari, C. Li-Guang, Improvement of regional myocardial and coronary blood flow reserve in a patient treated with enhanced external counterpulsation: evaluation by nitrogen-13 ammonia PET, Jpn Circ, 63(5) (1999) 407-411.
[15] S. Sawada, O. Muzik, R.S. Beanlands, E. Wolfe, G.D. Hutchins, Interobserver and interstudy variability of myocardial blood flow and flow-reserve measurements with nitrogen-13 ammonia labeled positron emission tomography, J Nucl Cardiol, 2(5) (1995) 413-422.
[16] T. Ido, R. Iwata, Fully automated synthesis of 13NH3, J Label Compd Radiopharm, 18 (1981) 244-246.
[17] R.K. Singh, R. Kumar, A.V. Pandit, M.J. Jacob, Simple, Reliable and Cost Effective Radiochemical Purity Test Technique for
N0-13 Ammonia, World Journal of Nuclear Medicien, 10 (2011) 062.
[18] D.P. Sobczy, J. van Grondelle, A.M. de Jong, M.J. de Voigt, R.A. Van Santen, Production of chemically pure gaseous [13N]NH3 pulses for PET studies using a modified Devarda reduction, Appl Radiat Isot, 57, 2 (2002) 201-207.
[19] R. Kumar, H. Singh, M.J. Jacob, A.S. Pal, Production of nitrogen-13-labeled ammonia by using 11MeV medical cyclotron: our experience, Hellenic Journal of Nuclear Medicine, (2009) 248-250.
[20] R.N. Krasikova, O.S. Fedorova, M.V. Korsakov, B. Landmeier, M.S. Berridge, Improved [13N]ammonia yield from the proton irradiation of water using methane gas, Radiation and Isotopes, 51 (1999) 395-401.
[21] B. Wieland, G. Bida, H. Padgett, In-target production of [13N] Ammonia via proton irradiation of dilute aqueous ethanol and acetic acid mixtures, Radiat, 42 (1991) 1095-1098.
[22] D. Schroder, J. Hrusak, R.H. Hertwing, W. Koch, Experimental and theoretical studies of Gold(I) complexes Au(L)+ (L=H2O, CO, NH3, C2H4, C3H6, C4H6, C6H6, C6F6), Organometallics, 14 (1) (1995).
[23] A. Bilić, J.R. Reimers, N.S. Hush, J. Hafner, Adsorption of ammonia on the gold (111) surface, J. Chem. Phys. 116 (2002) 8981.
[24] E.S. Kryachko, F. Remacle, The gold-ammonia bonding patterns of neutral and charged complexes. I. Bonding and charge alternation, J. Chem. Phys. 127 (2007) 194-305.