نوع مقاله : مقاله پژوهشی

نویسندگان

پژوهشکده چرخه سوخت هسته‌ای، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی ایران، صندوق پستی: 8486-11365، تهران- ایران

چکیده

با توجه به محدود بودن ذخایر اورانیم، فراوانی توریم نسبت به آن، عدم کاربرد در تکثیر سلاح‌های هسته‌ای و دیگر مزایای سوخت‌های توریمی نسبت به اورانیمی، توسعه چرخه سوخت توریم در کشورهای مختلف از جمله ایران مورد توجه می‌باشد. در این تحقیق فرایند جداسازی و بازیابی توریم از یک محلول فروشویی اسیدی واقعی با غلظت mg/L 500 توریم در مقیاس آزمایشگاهی به منظور تولید رسوب اکسید توریم مورد ارزیابی قرار گرفت. پارامترهای فرایندی مؤثر بر استخراج، تهی‌‌سازی و ترسیب شیمیایی توریم شامل نوع استخراج‌کننده (اسیدی، بازی و خنثی)، غلظت استخراج‌کننده (M 1-05/0)، اسیدیته فاز آبی (92/6-032/0)، زمان تعادل (min 60-5)، نوع و غلظت تهی‌ساز (M 7-1) و عامل رسوب‌دهنده به روش تک متغیره در هر بخش مورد بررسی و مطالعه قرار گرفت. با توجه به نتایج تجربی استخراج‌کننده دی(2-اتیل هگزیل) فسفریک اسید با غلظت M 1، اسیدیته فاز آبی برابر با 1/0، زمان تماس min 60، سولفوریک اسید با غلظت M 5 به عنوان تهی‌ساز و آمونیاک 25‌% به عنوان عامل رسوب‌دهنده در این تحقیق انتخاب شد. بازیابی توریم از محلول فروشویی اسیدی واقعی در شرایط فرایندی به دست آمده منجر به تولید رسوب اکسید توریم با خلوص 66‌% گردید.

کلیدواژه‌ها

عنوان مقاله [English]

Separation of thorium from a real acidic leach liquor solution by solvent extraction method with Di(2-ethylhexyl) phosphoric acid as extractant and chemical precipitation with ammonia

نویسندگان [English]

  • F. Khanramaki
  • A.R. Keshtkar
  • H. Sohbatzadeh
  • A. Pourmatin
  • N. Akbari

Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, AEOI, P.O.Box: 11365-3486, Tehran - Iran

چکیده [English]

Due to the limited uranium reserves, the abundance of thorium compared to it, not being used in nuclear proliferation, and other advantages of thorium fuels over uranium fuels, the development of the thorium fuel cycle in various countries, including Iran, is considered. In this research, the separation and recovery processes of thorium from a real acidic leach liquor solution with a concentration of 500 mg/L thorium on a laboratory scale to produce thorium oxide precipitate were evaluated. The operating parameters affecting the extraction, stripping, and chemical precipitation processes of thorium include the type of extractant (acidic, basic, and neutral), the concentration of the extractant (0.05-1 M), aqueous phase acidity (0.032-6.92), equilibrium time (5-60 min), type and concentration of stripper (1-7 M) and precipitating agent were studied by the univariate method in each section. According to the experimental results, Di(2-ethylhexyl) phosphoric acid with a concentration of 1 M as extractant, aqueous phase acidity equal to 0.1, equilibrium time 60 min, sulfuric acid with a concentration of 5 M as a stripper, and ammonia as a precipitating agent were selected. Recovery of thorium from a real acidic leach liquor solution under obtained conditions resulted in the production of thorium oxide precipitate with a purity of 66%.

کلیدواژه‌ها [English]

  • Real leach liquor solution
  • Solvent extraction
  • Chemical precipitation
  • Thorium recovery
  1. Thorium fuel cycles: potential benefits and challenges, in, International atomic energy agency, IAEA-Tecdoc-1450, ISBN 92–0–103405–9. Vienna, (2005).

 

  1. Thorium fuel utilization options and trends, IAEA-TECDOC-1319, Proceeding of three IAEA meetings in Vienna. (November 2002).

 

  1. S. Radhika, et al., Liquid–liquid extraction and separation possibilities of heavy and light rare-earths from phosphoric acid solutions with acidic organophosphorus reagents, Sep. Purify. Technol., 75, 295 (2010).

 

  1. F. Xie, et al., A critical review on solvent extraction of rare earths from aqueous solutions, Miner. Eng., 56, 10 (2014).

 

  1. F. Habashi, A textbook of hydrometallurgy: Métallurgie extractive, E. Québec, Ed., (1993).

 

  1. H. Singh, C.K. Gupta, Solvent Extraction in Production and Processing of Uranium and Thorium, Miner. Proc. Extr. Metall. Rev., 21(1-5), 307 (2000).

 

  1. R.K. Mishra, et al., A comparative study on extraction of Fe(III) from chloride leach liquor using TBP, Cyanex 921 and Cyanex 923, Hydrometallurgy. 104, 298 (2010).

 

  1. M.A. Didi, et al., Liquid–liquid extraction of thorium(IV) by fatty acids: a comparative study, J. Radioanal. Nucl. Chem., 299, 1191 (2014).

 

  1. M. Eskandarinasab, S. Alamdar Milani, Hydrometallurgical process for solvent extraction and separation of thorium, uranium and some rare earth elements in the commercial solution of Zarigan thorium-uranium mine using Cyanex-272 as extractant, Registration Number: 70592, Declaration Number: 390030347, (2019).

 

  1. D.J. Crouse, K.B. Brown, Recovery of Thorium, Uranium, and Rare Earths from Monazite Sulfate Liquors by the Amine Extraction (AMEX) Process, ORNL-2720 (1959).

 

  1. E.H. Borai, et al., Subsequent Separation and Selective Extraction of Thorium (IV), Iron (III), Zirconium (IV) and Cerium (III) from Aqueous Sulfate Medium, South African Journal of Chemistry, 69, 148 (2016).

 

  1. V.G. Maiorov, et al., Preparation of Thorium-Containing Concentrate from Perovskite, Radiochemistry, 47, 498 (2005).

 

  1. B. Gupta, et al., Extraction of uranium, thorium and lanthanides using Cyanex-923: Their separations and recovery from monazite, J. Radioanal. Nucl. Chem, 251, 451 (2002).

 

  1. W.M. Al-Areqi, et al., Solvent extraction of thorium from rare earth elements in monazite thorium concentrate, Malaysian Journal of Analytical Sciences, 21, 1250 (2017).

 

  1. A.H. Orabi, et al., Sequential separation and selective extraction of uranium and thorium from monazite sulfate leach liquor using dipropylamine extractant, Miner. Eng., 172, 107 (2021).

 

  1. K.W. Chung, et al., Solvent extraction, separation and recovery of thorium from Korean monazite leach liquors for nuclear industry applications, Ind. Eng. Chem. Res, 83, 72 (2020).

 

  1. M.F. Cheira, et al., Solvent Extraction and Separation of Thorium(IV) from Chloride Media by a Schiff Base, J. Solution. Chem, 47(4), 611 (2018).

 

  1. M. Shaeri, M. Torab-Mostaedi, A.R. Kelishami, Solvent extraction of thorium from nitrate medium by TBP, Cyanex272 and their mixture, J. Radioanal. Nucl. Chem, 303, 2093 (2015).

 

  1. R. Torkaman, et al., Synergistic extraction of gadolinium from nitrate media by mixtures of bis (2,4,4-trimethylpentyl) ithiophosphinic acid and di-(2-ethylhexyl) phosphoric acid, Ann. Nucl. Energy, 62, 284 (2013).

 

20        G.M. Ritcy, A.W. Ashbrook, Solvent extraction principles and applications to process metallurgy, Part I. (New York: Elsevier, 1984).

 

  1. B. Pan, et al., Ammonium vanadate/ammonia precipitation for vanadium production from a high vanadate to sodium ratio solution obtained via membrane electrolysis method, J. Clean. Prod., 263, 121 (2020).

 

  1. S. Longa, et al., Recovery of vanadium from alkaline leaching solution from roasted stone coal, Sci. Asia, 40, 69 (2014).

 

  1. M. Singh, et al., Understanding the extraction mechanism, radiolytic stability and stripping behavior of thorium by ionic liquid based solvent systems: evidence of ion exchange and solvation mechanism, J. Radioanal. Nucl. Chem, 311, 195 (2017).

 

  1. S. Priya, et al., Piperidinium based ionic liquid in combination with sulphoxides: Highly efficient solvent systems for the extraction of thorium, Hydrometallurgy, 164, 111 (2016).

 

  1. M.E. Nasab, Solvent extraction separation of uranium(VI) and thorium(IV) with neutral organophosphorus and amine ligands, Fuel, 116, 595 (2014).

 

  1. Y. Wang, et al., Preparation of high-purity thorium by solvent extraction with di-(2-ethylhexyl) 2-ethylhexyl phosphonate, J. Radioanal. Nucl. Chem, 298, 1651 (2013).

 

  1. X. Zhong, Y. Wu, Recovery of uranium and thorium from zirconium oxychloride by solvent extraction, J. Radioanal. Nucl. Chem, 292, 355 (2012).