نوع مقاله : مقاله پژوهشی

نویسندگان

1 پژوهشکده فیزیک و شتابگرها، پژوهشگاه علوم و فنون هسته‌ای، صندوق پستی: 3486-11365، تهران ـ ایران

2 پژوهشکده پلاسما و گداخت هسته‌ای، پژوهشگاه علوم و فنون هسته‌ای، صندوق پستی: 51113-14399، تهران- ایران

چکیده

آنالیز با واکنش هسته‌ای (NRA) یک روش توانمند برای مشخصه‌­یابی عناصر سبک در بسترهای سنگین است. در این پژوهش قابلیت این روش برای مشخصه‌یابی کربن در بسترهای پایه آهنی مورد ارزیابی قرار گرفت. خطای سیستماتیک روش 6‌% و حساسیت آن برای تعیین کربن در بستر فلزی 05/0‌% وزنی تخمین زده شد. برای اندازه‌گیری کربن توده از سه نمونه استاندارد مختلف با محتوای مشخص کربن استفاده شد. اختلاف مقادیر کربن اندازه‌گیری­شده و واقعی برای نمونه‌های استاندارد در گستره خطای روش و کم‌تر از 6‌% گزارش شد. برای تعیین نمایه عمقی از نمونه‌های فولاد L304 کربن‌دهی شده به روش پلاسمای DC در دو دمای مختلف زیر لایه، استفاده شد. اثر دمای زیر لایه بر شکل‌گیری لایه کربن و نفوذ آن در بستر فلزی مورد مطالعه قرار گرفت. تشکیل ترکیب C3Fe در عمق نمونه کربن‌دهی شده در دمای C˚385 زیر لایه با استفاده از روش NRA تعیین و با سایر روش‌های مکمل SEM و XRD مورد تأیید قرار گرفت.

کلیدواژه‌ها

عنوان مقاله [English]

Characterization of carbon in metal substrates by nuclear reaction analysis method

نویسندگان [English]

  • S. Shafiei 1
  • H. Rafi-Kheiri 1
  • A.R. Jokar 1
  • M.B. Mahmoudi 2

1 Physics and accelerators Research School, Nuclear Science and Technology Research Institute, P.O.Box: 11365-3486, Tehran – Iran

2 Plasma and Nuclear Fusion Research Institute, Nuclear Science and Technology Research Institute, P.O.Box: 14399-51113, Tehran – Iran

چکیده [English]

Nuclear reaction analysis (NRA) is a powerful method for the characterization of light elements in heavy matrix. The capability of this method to determine carbon in iron-based substrates was studied. The systematic error of this method was estimated to be 6%. It was found that the sensitivity of the method for determining carbon in the metal substrates is 0.05% by weight. Three different standard samples of which have specific carbon content, were used to measure carbon in the bulk substrate. The difference between measured and actual carbon of standard samples is within the method error spread and less than 6% reported. To determine the depth profile, carbonized steel-304L samples by the DC plasma method in two various substrate temperatures were used. The effect of the substrate temperature on the formation of the carbon layer and its depth profile was studied. The formation of Fe3C layer in the depth of the carbon samples under the 385 °C has been determined using the NRA method and confirmed with other SEM and XRD methods.

کلیدواژه‌ها [English]

  • Nuclear reaction analysis (NRA)
  • Alloys based on iron
  • Carbonizing
  • Depth profile
  • Carbon in bulk
  1. Totten G.E. Steel heat treatment: metallurgy and technologies. 2nd ed. (CRC Press. 2006).

 

  1. Chen C.C, Hong F.C.N. Interfacial studies for improving the adhesion of diamond-like carbon films on steel. Applied Surface Science. 2005;243:296.

 

  1. Tyagi A, Walia R.S, Murtaza Q, Pandey Sh.M, Tyagi P.K, Bajaj B. A critical review of diamond like carbon coating for wear resistance applications. International Journal of Refractory Metals Hard Materials. 2019;78:107.

 

  1. Arslan A, Masjuki H.H, Kalam M.A, Varman M, Mosarof M.H, Mufti R.A, Quazi M.M, Khuong L.S, Liaqat M, Jamshaid M, Alabdulkarem A, Khurram M. Investigation of laser texture density and diameter on the tribological behavior of hydrogenated DLC coating with line contact configuration. Surface Coatings Technology. 2017;322:31.

 

  1. Kiryukhantsev-Korneev F. Possibilities of glow discharge optical emission spectroscopy in the investigation of coatings. Russian Journal of Non-Ferrous Metals. 2014;55:494.

 

  1. Afgan M.S, Hou Z, Wang Z. Quantitative analysis of common elements in steel using a handheld μ-LIBS instrument. Journal of Analytical Atomic Spectrometry. 2017;32:1905.

 

  1. Escobar Galindo R, Gago R, Duday D, Palacio C. Towards nanometric resolution in multilayer depth profiling: a comparative study of RBS, SIMS, XPS and GDOES. Analytical and Bioanalytical Chemistry. 2010;396:2725.

 

  1. Magee C.W, Botnick E.M. Hydrogen depth profiling using SIMS—Problems and their solutions. Journal of Vacuum Science and Technology. 1981;19:477.

 

  1. Bird R.C, Williams J.S. Ion beams for materials analysis. Elsevier. 1990.

 

  1. Nastasi M. Handbook of Modern Ion Beam Materials Analysis. 2nd ed. (CRC Press 2009).

 

  1. Ene A, Popescu I.V, Badica T. Determination of carbon in steels using particle-induced gamma ray spectrometry. Journal of Optoelectronics and Advanced Materials. 2006;8:222.

 

  1. Bai X, Calligaro Th, Pichon L, Moignard B, Lemasson Q, Gosselin M, Richiero S, Dillmann Ph, Téreygeol F, Auber–Le Saux J, Wilkie-Chancellier N, Detalle V. Comparative study on quantitative carbon content mapping in archaeological ferrous metals with laser-induced plasma spectroscopy (LIBS) and nuclear reaction analysis (NRA) for 3D representation by LIBS. Spectrochimica Acta Part B: Atomic Spectroscopy. 2022;194:106454.

 

  1. Poladi A, Mohammadian Semnani H.R, Emadoddin E, Mahboubi F, Ghomi H.R. Nanostructured TaC film deposited by reactive magnetron sputtering: Influence of gas concentration on structural, mechanical, wear and corrosion properties. Ceram. Int. 2019;45:8095.

 

  1. Wang Y.Q, Zhang J, Tesmer J.R, Li Y.H, Greco R, Grim G.P, Obst A.W, Rundberg R.S, Wilhelmy J.B. Determination of 13C/12C ratios with (d, p) nuclear reactions. Nucl Instrum Methods Phys Res B. Nucl. Instrum. MethodsPhys. Res. B. 2010;268:2099.

 

  1. http://www.MBH.CO.UK, Reference Materials. 2002/2003.

 

  1. Ahmadi E, Mahmudi M.B, Basiri M, Morad Shahi M. in: Thirteenth National Seminar on surface Engineering, Effect of time on carbonization of stainless steel L 316 in plasma environment. Tabriz University. 1391 [In Persian].

 

  1. http://www-nds.iaea.org/ibandl.

 

  1. M. Mayer. in: AIP conference proceedings, SIMNRA, a simulation program for the analysis of NRA, RBS and ERDA. (American Institute of Physics. 1999).

 

  1. Rafi-kheiri H, Kakuee O, Lamehi-Rachti M. Differential cross section measurement of 16o (d, p0, 1) reactions at energies and angles relevant to NRA. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 2016;371:46.

 

  1. Jokar A, Rafi-kheiri H. DIGE differential cross section data for oxygen isotopic analysis. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 2020;482:11.

 

  1. Shimada T, Kikuchi H, Ueda Y, Sagara A, Nishikawa M. Blister formation in tungsten by hydrogen and carbon mixed ion beam irradiation. Journal of Nuclear Materials. 2003;313:204.

 

  1. Hayashi N, Sakamoto I, Takahashi T. Phase transformation in helium ion irradiated 316 stainless steel. Journal of Nuclear Materials. 1984;128:756.

 

  1. Lamim T.S, Bernardelli E.A, Binder C, Klein A.N, Maliska A.M. Plasma carburizing of sintered pure iron at low temperature. Materials Research. 2015;18:320.

 

  1. Liang W, Xiaolei X, Bin X, Zhiwei Y, Zukun H. Low temperature nitriding and carburizing of AISI304 stainless steel by a low pressure plasma arc source. Surface Coatings Technology. 2000;131:1.

 

  1. Chen Y, Zhang X.F, Wang A.J, Zhang Q.L, Huang H, Feng J.J. Ultrafine Fe3C nanoparticles embedded in N-doped graphitic carbon sheets for simultaneous determination of ascorbic acid, dopamine, uric acid and xanthine. Microchimica Acta. 2019;186:1.

 

  1. Bateer B, Wang L, Zhao L, Yu P, Tian C, Pan K, Fu H. A novel Fe3C/graphitic carbon composite with electromagnetic wave absorption properties in the C-band. RSC Adv. 2015;5:60135.