نوع مقاله : مقاله پژوهشی

نویسندگان

1 پژوهشکده کاربرد پرتوها، پژوهشگاه علوم و فنون هسته‌ای، صندوق پستی: 836-14395، کرج – ایران

2 پژوهشکده رآکتور و ایمنی هسته‌ای، پژوهشگاه علوم و فنون هسته‌ای، صندوق پستی: 836-14395، تهران- ایران

3 گروه فیزیک و مهندسی پزشکی، دانشکده پزشکی، دانشگاه علوم پزشکی شهید بهشتی، صندوق پستی: 6446-14155، تهران- ایران

4 بخش مهندسی هسته‌ای، دانشکده مهندسی مکانیک، دانشگاه شیراز، صندوق پستی: 84334-71946، شیراز - ایران

چکیده

نقش و مزایای توموگرافی کامپیوتری دندانی (CBCT) در تصویربرداری از دندان‌­ها، تشخیص و طراحی درمان به خوبی شناخته شده است، اما استفاده از پرتو­های ایکس در این دستگاه­‌ها، بدون خطر نیست. این مطالعه با هدف ارائه اطلاعات جامعی از دز جذبی و دز مؤثر وابسته به اندازه (Size-Specific effective dose) بیماران زن و مرد برای گستره وسیعی از شاخص‌های توده بدنی (BMI) در دستگاه­‌های CBCT دندانی انجام شد. در این راستا، از روش مونت کارلو  برای شبیه‌سازی سه پروتکل مختلف تصویربرداری با دستگاه GIANO، استفاده شد. جمعیتی از فانتوم‌های محاسباتی XCAT مرد و زن بالغ با شاخص‌­های توده بدنی­ مختلف برای انجام شبیه‌سازی مونت کارلو استفاده شد. دزهای اندازه‌­گیری شده با استفاده از فانتوم راندو حاوی دزیمترهای ترمولومینسانس و دزهای شبیه­‌سازی شده با استفاده از تصاویر سی تی فانتوم راندو برای اعتبارسنجی شبیه‌­سازی مونت کارلو مقایسه شدند. نتایج نشان داد دز اندام‌­ها برای میدان‌های دید مختلف (FOVs) متفاوت بوده و معمولاً در زنان بالغ بالاتر است. بیشینه دز مؤثر برای پروتکل‌­های مفصل گیج‌گاهی-فکی (TMJ)، تک فک و هر دو ­فک به ترتیب، μSv5±94، μSv4±63 و μSv2±62 برای مردان بالغ به ترتیب با شاخص توده بدنی 82/25، 70/21 و 2-kg m 71/21، و μSv3±98، μSv1±69 و μSv1±66 برای زنان بالغ به ترتیب با شاخص توده بدنی 69/71، 21/21 و 2-kg m 72/21، بود. هم­چنین تفاوت بین حداقل و حداکثر مقدار دز مؤثر در پروتکل­‌های TMJ، تک­ فک و هر دو­ فک برای مردان بالغ، 24‌%، 37‌% و 32‌% و برای زنان بالغ به ترتیب 24‌%، 32‌% و 35‌% بود. در نهایت، این مطالعه مجموعه داده‌های جامعی از دزهای جذبی و مؤثر بیماران برای طیف وسیعی از شاخص توده بدنی بدون نیاز به اندازه‌گیری تجربی ارائه می­‌کند.

کلیدواژه‌ها

عنوان مقاله [English]

Organ and Size-Specific effective doses from dental cone beam CT based on Body Mass Indexes (BMIs): Monte-Carlo simulation study

نویسندگان [English]

  • A. Aghaz 1
  • M.R. Kardan 2
  • M.R. Deevband 3
  • B. Bahadorzadeh 4

1 Radiation Application Research School, Nuclear Science and Technology Research Institute, P.O.BOX: 14395-836, Karaj – Iran

2 Reactor and Nuclear Safety Research School, Nuclear Science and Technology Research Institute, P.O.BOX: 14395-836, Tehran – Iran

3 Department of Medical Physics and Biomedical Engineering, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O.BOX: 14155-6446, Tehran – Iran

4 Nuclear Engineering Department, Shiraz University, P.O.BOX: 71946-84334, Shiraz - Iran

چکیده [English]

Cone-Beam CT (CBCT) is well known for its role in dental imaging, diagnosis, and treatment planning, but xrays can be risky. This study aimed to provide an accurate and comprehensive database of organs and size-specific effective doses based on body mass indexes (BMI) of patients in dental-CBCT units. To simulate exposure geometry for three different imaging protocols with GIANO CBCT, one of the commonly used units in Iran, the Monte-Carlo (MC) method was used. The population of Extended-Cardiac Torso(XCAT) adult male and female computational phantoms with various BMIs were used in the simulation as input files. The measured doses from the Rando phantom and thermoluminescence dosimeters were compared with simulated doses based on CT images of the Rando phantom. This was done to validate the simulations. The results showed the organs doses for the different Fields-of-View(FOVs) varied widely, usually in adult females was higher. The maximum size-specific effective doses for temporomandibular-joint (TMJ), single, and both arch protocols were 94±5μSv, 63±4μSv, and 62±2μSv for adult males with BMIs 25.82, 21.70, and 21.71kg m-2, whereas, and 98±3μSv, 69±1 μSv and 66±1μSv for adult females with BMIs 21.69, 21.71 and 21.72kg m-2, respectively. Also, the difference between the minimum and maximum value of effective dose in TMJ, single, and both-arch protocols was 24%, 37%, and 32% for AM. These AF values were 24%, 32%, and 35%, respectively. Eventually, this study provides a comprehensive data set of patient doses for wide ranges of BMIs without experimental measurement.

کلیدواژه‌ها [English]

  • Effective dose
  • CBCT
  • Monte carlo method
  • Body mass index
  • XCAT phantom
  1. Scarfe W.C, Angelopoulos C. Maxillofacial cone beam computed tomography: principles, techniques and clinical applications. 2018:Springer Cham. XIX, 1242.

 

  1. Ludlow J.B, Timothy R, Walker C, Hunter R, Benavides E, Samuelson D.B, Scheske M.J. Effective dose of dental CBCT—a meta analysis of published data and additional data for nine CBCT units. DMFR. 2015;44(1):20140197.

 

  1. Ludlow J.B, Johnson B.K, Ivanovic M. Estimation of effective doses from MDCT and CBCT imaging of extremities. J. Radiol. Prot. 2018;38(4):1371.

 

  1. Pauwels R. Cone beam CT for dental and maxillofacial imaging: dose matters. Radiat. Prot. Dosim. 2015;165(1-4):156-161.

 

  1. Loubele M, Bogaerts R, Van Dijck E, Pauwels R, Vanheusden S, Suetens P, Marchal G, Sanderink G, Jacobs R. Comparison between effective radiation dose of CBCT and MSCT scanners for dentomaxillofacial applications. Eur. J. Radiol. 2009;71(3):461-468.

 

  1. Roberts J.A, Drage N.A, Davies J, Thomas D.W. Effective dose from cone beam CT examinations in dentistry. Br. J. Radiol. 2009;82(973):35-40.

 

  1. Stratis A, Zhang G, Jacobs R, Bogaerts R, Bosmans H. The growing concern of radiation dose in paediatric dental and maxillofacial CBCT: an easy guide for daily practice. Eur. Radiol. 2019;29:7009-7018.

 

  1. Morant J.J, Salvadó M, Hernández-Girón I, Casanovas R, Ortega R, Calzado A. Dosimetry of a cone beam CT device for oral and maxillofacial radiology using Monte Carlo techniques and ICRP adult reference computational phantoms. Dentomaxillofacial Radiology. 2013;42(3):92555893.

 

  1. Soares M.R, Santos W.S, Neves L.P, Perini A.P, Batista W.O.G, Belinato W, Maia A.F, Caldas L.V.E. Dose estimate for cone beam CT equipment protocols using Monte Carlo simulation in computational adult anthropomorphic phantoms. Radiat. Phys. Chem. 2019;155:252-259.

 

  1. Marcu M, Hedesiu M, Salmon B, Pauwels R, Stratis A, Oenning A.C.C, Cohen M.E, Jacobs R. Estimation of the radiation dose for pediatric CBCT indications: a prospective study on ProMax3D. International Journal of Paediatric Dentistry. 2018;28(3):300-309.

 

  1. Mutalik S, Tadinada A, Molina M.R, Sinisterra A, Lurie A. Effective doses of dental cone beam computed tomography: effect of 360-degree versus 180-degree rotation angles. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology. 2020;130(4):433-446.

 

  1. Stratis A, Zhang G, Lopez-Rendon X, Jacobs R, Bogaerts R, Bosmans H. Customisation of a Monte Carlo dosimetry tool for dental cone-beam CT systems. Radiation Protection Dosimetry. 2016;169(1-4):378-385.

 

  1. Pauwels R, Zhang G, Theodorakou C, Walker A, Bosmans H, Jacobs R, Bogaerts R, Horner K. Effective radiation dose and eye lens dose in dental cone beam CT: effect of field of view and angle of rotation. The British Journal of Radiology. 2014;87(1042):20130654.

 

  1. Park C.H. Effective dose assessment with optically stimulated luminescence dosimetry and Monte Carlo calculation in CBCT. Yonsei. 2018.

 

  1. Panjnoush M, Shokri A, Hosseini Pouya M, Deevband M. Comparison of radiation absorbed dose in target organs in maxillofacial imaging with panoramic, conventional linear tomography, cone beam computed tomography and computed tomography. J. Dent. Med. Tehran. Univ. Med. Sci. 2009;22(3):113-119.

 

  1. Pour A.R, Hafezi L, Mianji F, Tehrani S.H. Comparison of absorbed dose of two CBCT device with intra and extraoral digital radiographies in target organs. Journal of Research in Dental Sciences. 2016;13(3).

 

  1. Segars W.P, Bond J, Frush J, Hon S, Eckersley C, Williams C.H, Feng J, Tward D.J, Ratnanather J.T, Miller M.I, Frush D, Samei E. Population of anatomically variable 4D XCAT adult phantoms for imaging research and optimization. Med Phys. 2013;40(4):043701.

 

  1. Schoonjans F, De Bacquer D, Schmid P. Estimation of population percentiles. Epidemiol. 2011;22(5):750-751.

 

  1. Segars W.P, Sturgeon G, Li X, Cheng L, Ceritoglu C, Ratnanather J.T, Miller M.I, Tsui B.M.W, Frush D, Samei E. Patient specific computerized phantoms to estimate dose in pediatric CT. in Medical Imaging 2009: Physics of Medical Imaging. 2009. SPIE.

 

  1. GIANO-Brochure. NEWTOM GiANO PRECISION.DIAGNOSTICS. V.S.P.a.I.I.C. s.c. Editor. 2019.

 

  1. Collaboration G. Introduction to geant4. 2010.

 

  1. Aghaz A, Kardan M.R, Deevband M.R, Bahadorzadeh B, Kasesaz Y, Ghadiri H. Patient-specific dose assessment using CBCT images and Monte Carlo calculations. JINST. 2021;16(10):P10011.

 

  1. ICRP, The 2007 Recommendations of the International Commission on Radiological Protection. ICRP Publication 103. Ann. ICRP. 2007;37:2-4.

 

  1. Lee C, Yoon J, Han S.S, Na J.Y, Lee J.H, Kim Y.H, Hwang J.J. Dose assessment in dental cone-beam computed tomography: Comparison of optically stimulated luminescence dosimetry with Monte Carlo method. PloS one. 2020;15(3):e0219103.