نوع مقاله : مقاله پژوهشی

نویسندگان

پژوهشگاه علوم و فنون هسته ای، سازمان انرژی اتمی ایران

چکیده

مقوله­‌ی ایمنی و دسته­‌بندی مرتبط با آن، از مسائل مهم در همه‌­ی زمینه‌­های صنعت هسته‌­ای، و به­‌ویژه راکتورهای هسته­‌ای است. از جمله مهم‌ترین جنبه­‌ی ایمنی در راکتورهای هسته‌­ای، وجود سیستم­‌های خاموشی است که هر راکتور حداقل یکی از آن‌ها را دارد. یکی از قابلیت‌­هایی که می‌­تواند ایمنی یک راکتور هسته‌­ای را بالا ببرد اضافه کردن یک سیستم خاموشی دیگر به آن است. برای انجام هر تغییری مثل طراحی و جا نمایی سیستم خاموشی دوم در راکتور، توجه به ویژگی­‌های خاص هر راکتور و معیارهای مبنای طراحی از جمله افزونگی، تنوع، استقلال، معیارهای تک نقص و حالت خود ایمن، ضروری است. یک سیستم خاموشی دوم برمبنای تزریق جاذب نوترون برای راکتور تحقیقاتی تهران با توجه به معیارها و الزامات مربوط به این راکتور طراحی شده است. طرح پیشنهاد شده اعتمادپذیری بالایی دارد که توانایی براورده کردن مهم‌­ترین شرط طراحی، یعنی داشتن راکتیویته­‌ی منفی مورد نیاز را داشته باشد. علاوه بر این بتواند راکتور را در بازه­‌ی زمانی مشخص، با حاشیه‌­ی ایمنی لازم و برای مدت زمان مورد نیاز زیر بحرانی کند. محاسبات و شبیه‌­سازی­‌ها با استفاده از کد محاسباتی MCNPX انجام شده است. این طرح اندکی اثر منفی روی مشخصه­‌های مختلف قلب دارد که با بهینه‌­سازی ساختار طراحی شده، آثار منفی ناشی از به کارگیری سیستم خاموشی دوم کمینه شده است.

کلیدواژه‌ها

عنوان مقاله [English]

Safety Enhancement of Tehran Research Reactor with a Second Shutdown System

نویسندگان [English]

  • E Boustani
  • S Khakshournia
  • E Abedi

چکیده [English]

Safety and related categories are of importance in all fields of nuclear industry, especially as regards the nuclear reactors. One of the most important safety aspects in the nuclear reactors is the shutdown system, each reactor requiring at least one. One of capabilities that can improve the safety of a nuclear reactor is adding another shutdown system to it. For making any change as design and locating second shutdown system in the reactor, attention to special characteristics of any reactor and design basis criteria such as redundancy, diversity, separation, single failure criteria and fail-safe mode is necessary. A second shutdown system based on the injection of neutron absorber is designed with considering its standards and requirements for Tehran Research Reactor. The proposed design has a high reliability that fulfils the most important design requirement, which is having enough negative reactivity, has the ability to maintain the reactor in subcritical state in a determined period of time with the necessary safety margin and for needed time duration. Calculations and simulations have been done using MCNPX code. This design has some negative effects on different core characteristics, albeit minimized by the designed structure optimization.

کلیدواژه‌ها [English]

  • Tehran Research Reactor
  • Second Shutdown System
  • Safety
  • Optimization
  • MCNPX
[1] Safety of Nuclear Power Plants: Design, IAEA Safety Standards, Specific Safety Requirement NO. SSR-2/1, International Atomic Energy Agency, Vienna, Austria (2012)  38.
 
[2] Design of the Reactor Core for Nuclear Power Plants, Safety Guide No. NS-G-1.12, Interantional Atomic Energy Agency, Vienna, Austria (2005) 24.
 
[3] Use of a Graded Approach in the Application of the Safety Requirements for Research Reactors, IAEA Safety Standard, Specific Safety Guide No. SSG-22, International Atomic Energy Agency, Vienna, Austria (2012)  30.
 
[4] Safety Reassessment for Research Reactors in the Light of the Accident at the Fukushima Daiichi Nuclear Power Plant, Safety Report Series No. 80, International Atomic Energy Agency, Vienna, Austria (2014)  13.
 
[5] M.V.I. Fukami, A. Santecchia, CAREM Project: Innovative Small PWR, Prog. in Nucl. En. 37(1) (2000)  265-270.
 
[6] E. Uspuras, S. Rimkevicius, A. Kaliatka, Ignalina Nuclear Power Plant Safety Issues, The 25th International Symposium on Automation in Construction, Technika, Vilnius (2008) 33-38.
 
[7] Z. Wu, D. Lin, D. Zhong, The Design Features of the HTR-10, Nucl. Eng. Des. 218(1) (2002)  25-32.
 
[8] C.M. Tseng, Second Trip System for NRU Research Reactor, Nucl. Eng. Des. 152(1) (1994) 175-181.
 
[9] K. Böning, J. Blombach, Design and Safety Features of the Planned Compact Core Research Reactor FRM-II (1995).
 
[10] J.J. Duderstadt, L.J. Hamilton, Nuclear Reactor Analysis, John Wiely & Sons, Inc., Ann Arbor, Michigan (1976)  pp. 210, 539, 554.
 
[11] M.K. Sapara, S. Kundu, L.R. Mohan, Development of High Pressure Conductivity Probe (HPCP) for Secondary Shut down System (SDS-2) of 500 MWe PHWR, BARC report, Bhabha Atomic Research Centre, Mumbai, India (2003).
 
[12] S. Vanmaercke, G. Van den Eynde, E. Tijskens, Y. Bartosiewicz, Design of a Complementary Scram System for Liquid Metal Cooled Nuclear Reactors, Nucl. Eng. Des. 243 (2012) 87-94.
 
[13] S. Kim, The OPAL (Open Pool Australian Light-Water) Reactor in Australia, Nucl. Eng. Tech. 38 (5) (2006) 443.
 
[14] M.A. Gaheen, Safety Aspects of Research Reactor Core Modification for Fission Molybdenum-99 Production, RERTR 2010- 32th International Meeting on Reduced Enrichment for Resarch Reactors, Lisbon, Portugal (2010).
 
[15]      Safety of New and Existing Research Reactor Facilities in Relation to External Events, Safety report series No. 41, Interantional Atomic Energy Agency, Vienna, Austria (2005) 11-12.
 
[16] H.R. Jalili, A.H. Fadaei, M. Garib, Study on Secondary Shutdown Systems in Tehran Research Reactor, Nucl. Eng. Des. 291 (2015) 224-235.
 
[17]      Logbook of Tehran Research Reactor, No. 24, Atomic Energy Organization of Iran, Tehran, Iran (1999).
 
[18] J.V. Lolich, Advanced Nuclear Research Reactor, Office of Scientific and Technical Information, United States Department of Energy, Argentina (2004).
 
[19] Replacement research reactor project, chapter 5c, Safety Analysis Report, Austalia (2014)  4.
 
[20]      H.M. Hussein, E. Amin, A.M. Sakr, Effect of Core Configurations on Burn-Up Calculations For MTR Type Reactors, Proceedings of the 8th Conference on Nuclear and Particle Physics, Hurghada, Egypt (2011).
 
[21]      J.R. Lamarsh, Introduction to Nuclear Engineering, Addision-Wesely publishing company, Polytechnic Institute of New York, USA (1975)  276-290.
 
[22]      S. Glasstone, A. Sesonske, Nuclear Reactor Engineering, Vol. 4 (1994), New York: Chapman & Hall Inc.
 
[23]      G.d.K. Ausschusses, Shutdown system for light water reactor, Nuclear Safety Standards Commission (KTA), Germany (1984).
 
[24]      K. Crapse, E. Kyser, Literature Review of Boric Acid Solubility Data, Savaneh River National Laboratory, USA (2011).