نوع مقاله : مقاله پژوهشی

نویسندگان

پژوهشکده‌ی فیزیک پلاسما و گداخت هسته‌ای، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی

چکیده

 از آن­جا که فرونشانی موضعی، عامل ناپایداری حرارتی- الکتریکی در مگنت­‌های ابررساناست، اگر انرژی موضعی از حد معینی که به آن حداقل انرژی فرونشانی (MQE) گفته می‌­شود
بیش‌­تر شود، ناحیه­‌ی عادی در ابررسانا منتشر خواهد شد. بنابراین، نرخ رشد ناحیه­‌ی عادی به عنوان سرعت انتشار فرونشانی (νq) عامل مهمی در آشکارسازی فرونشانی و حفاظت محسوب می­‌شود. در این مقاله، با اِعمال تپ­‌های حرارتی موضعی، MQE به عنوان معیاری از پایداری، و νq به عنوان کمیت خود- محافظی ابررسانا در برابر فرونشانی بر روی طول کوتاهی از نوار ابررسانای دمابالای  Bi-2223/AgMgاندازه­‌گیری شده است. علاوه ­بر این، وابستگی MQE و νq به جریان کاری بررسی شد به طوری­که با افزایش جریان، نرخ کاهش MQE و نرخ افزایش νq به دست آمده است. این آزمایش­‌ها تحت بخار نیتروژن و بدون اِعمال میدان مغناطیسی انجام شده است.

کلیدواژه‌ها

عنوان مقاله [English]

Experimental Study of Quench Properties on Bi-2223/AgMg High Temperature Superconducting Tape

نویسندگان [English]

  • M Abdollahi Dargah
  • N Abdollahi Ghahi
  • N Alinezhad

چکیده [English]

Since the local quench which induces electro-thermal instability if a local energy input exceeds a certain threshold called minimum quench energy (MQE), the normal zone propagates along the superconductor. Therefore, the rate of the normal zone spreading as a quench propagation velocity (νq) is an important factor in the quench detection and protection. This paper focuses on the measurement of νq as a self-protection parameter in a short sample of a high temperature superconducting Bi-2223/AgMg tape by applying the localized heat pulses, and MQE as a superconducting stability criterion. In addition, the current dependences of MQE and νq were verified in which by increasing the transport current, the rate of decreasing of MQE and the rate of increasing of νq were measured. These experiments have been done in nitrogen vapor without applying any magnetic field.

کلیدواژه‌ها [English]

  • Bi-2223/Ag Superconducting Tape
  • Local Heat Disturbance
  • Minimum Quench Energy
  • Quench Propagation Velocity
  • Nitrogen Vapor
[1]  Y. Iwasa, Stability and protection of superconducting magnets: A discussion, IEEE Trans. Appl. Supercond. 15(2) (2005) 1615-1620.
 
[2] Z.M. Bai, C.L. Wu, J.X. Wang, Thermal Stability Analysis of High Temperature Superconducting Magnet Coils under Overcurrent Pulses, physica C: Superconductivity 443(1) (2006), 33-37.
 
[3] M. Wilson, Superconducting Magnets, Oxford University Press (1983) 68-71.
 
[4] A. Devred, Quench origins, AIP Conference Proceedings 249(2) (1992) 1262-1308.
 
[5] Y. Iwasa, HTS magnets: stability; protection; cryogenics; economics; current stability/protection activities at FBML, Cryogenics 43(3) (2003) 303-316.
 
[6] Y. Iwasa, Case Studies in Superconducting Magnets, 2th edition, Springer Science (2009).
 
[7] M. Breschi, L. Trevisani, M. Boselli, L. Bottura, A. Devred, P.L. Ribani, and F. Trillaud, Minimum quench energy and early quench development in NbTi superconducting strands, IEEE Trans. Appl. Supercond. 17(2) (2007) 2702-2705.
 
[8] W. Pi, X. Shi, J. Dong, and Y. Wang, Experimental Investigation on Quench Characteristics of NbTi/Bi2223 Hybrid Superconductor (2015).
 
[9] H. Bajas, M. Bajko, B. Bordini, L. Bottura, S. Izquierdo Bermudez, J. Feuvrier, A. Chiuchiolo, J. C. Perez, and G. Willering, Quench Analysis of High-Current-Density Nb3Sn Conductors in Racetrack Coil Configuration, IEEE Trans. Appl. Supercond. 25(3) (2015) 1-5.
 
[10] C.L. Wu, Z.M. Bai, J.H. Li, J.X. Wang, Normal-zone propagation velocities in Bi-2223/Ag superconducting multifilament tape, Physica C: Superconductivity 386 (2003) 166-169.
 
[11] E. Martinez, F. Lera, M. Martinez-Lopez, Y. Yang, S.I. Schlachter, P. Lezza, P. Kovac, Quench development and propagation in metal/MgB2 conductors, Supercond. Sci. Technol. 19(1) (2006) 143.
 
[12] T. Huang, E. Martínez, C. Friend, and Y. Yang, Quench characteristics of HTS conductors at low temperatures, IEEE Trans. Appl. Supercond. 18(2) (2008) 1317-1320.
 
[13] Z. Zhong, H.S. Ruiz, L. Lai, Z. Huang, W. Wang, T. Coombs, Experimental study of the normal zone propagation velocity in double-layer 2G-HTS wires by thermal and electrical methods, IEEE Trans. Appl. Supercond. 25(3) (2015) 1-5. 
 
[14] M. Lebioda, J. Rymaszewski, Analysis of normal zone propagation in superconducting tapes initiated by thermal disturbances, Journal of Physics: Conference Series. 709 (2016) 012011.
 
[15] M. Abdollahi, N. Alinejad, J. Mahmoodi, N. Abdollahi, Study of Quench and Its Characterization on High Temperature Superconducting Bi-2223/Ag Tape, J. of Nucl Sci. and Tech. 79 (2017) 12-19 (In Persian).
[16] S.B. Kim, A. Ishiyama, H. Okada, S. Nomura, Introduction to High Temperature Superconductivity, Kluwer Academic Publishers (2002) 360-363.
 
[17] J.H. Joo, H. Sano, T. Kadota, S.B. Kim, S. Murase, Y. K. Kwon, Y.S. Jo, Study on quench protection method with regards to normal transition behavior for HTS coil. IEEE Trans. Appl. Supercond. 20(3) (2010) 2027-2030.
 
[18] A. Devred, Practical Low-Temperature Superconductors for Electromagnets,CERN–2004–006 12 July 2004 Accelerator Technology Department.
 
[19] J.H. Joo, H. Sano, T. Kadota, S.B. Kim, S. Murase, Y. K. Kwon, Y.S. Jo, Study on quench protection method with regards to normal transition behavior for HTS coil. IEEE Trans. Appl. Supercond. 20(3) (2010) 2027-2030.
 
[20] D. Colangelo, B. Dutoit, Impact of the Normal Zone Propagation Velocity of High-Temperature Superconducting Coated Conductors on Resistive Fault Current Limiters, IEEE Trans. Appl. Supercond. 25(2) (2015) 1-8.
 
[21] Zi. Melhem, High temperature superconductors (HTS) for energy applications. Elsevier (2011).
 
­­[22] R. Bellis and Y. Iwasa, Quench Propagation in High Tc Superconductors, Cryogenics 34(2) (1994) 129-144.