نوع مقاله : مقاله پژوهشی

نویسندگان

پژوهشکده‌ی مواد و سوخت هسته‌ای، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی ایران

چکیده

جداسازی فلزهای سنگین از پساب صنعتی، معضل زیست‌­محیطی جدی به ویژه در کشورهای در حال توسعه است. از میان فناوری­‌های آمایشی متعدد، به نظر می‌­رسد که جذب‌­زیستی گزینه­‌ی مناسبی باشد. ­جاذب­‌های زیستی پایه میکروبی برای حذف فلزهای سنگین از محلول­‌های آبی، مؤثر و کاربردی­‌اند. در مطالعه­‌ی حاضر، توانایی باکتری Pseudomonas putida تثبیت ­شده بر روی کیتوزان برای جذب‌­زیستی اورانیم (VI) از محلول‌­های آبی بررسی شد. غربال­‌گری عوامل مؤثر بر فرایند جذب­‌زیستی به کمک طراحی پلکت- برمن صورت گرفت. نتایج تجربی نشان داد که مقدار جاذب‌­زیستی، غلظت اولیه اورانیم، اندازه­‌ی ذرات جاذب­‌زیستی، درصد وزنی باکتری در جاذب‌­زیستی و pH، به­ ترتیب بیش­ترین تأثیر را بر میزان جذب دارند، در حالی­که دما یک پارامتر غیرمؤثر تشخیص داده شد. بیشینه‌­ی ظرفیت جذب­‌زیستی عملی برای جاذب­‌زیستی حاوی 15% وزنی باکتری و معادلmg/g  536.08 به دست آمد. ایزوترم‌­های جذب­‌زیستی با استفاده از مدل­‌های لانگمویر، فرندلیچ و دابینین- رادوشکویچ تحلیل شد. برای جاذب‌­زیستی، مدل لانگمویر (0.983=R2) بهترین برازش را با داده­‌های تعادلی از خود نشان داد و بیشینه ظرفیت به دست آمده از این مدل برای این جاذب‌­زیستی 588.23 و برای کیتوزان خالص mg/g 454.54 بود. در نتیجه، مطالعه‌­ی حاضر نشان داد که جاذب‌­زیستی تهیه شده می­‌تواند موردی مناسب برای جذب‌­زیستی اورانیم باشد.

کلیدواژه‌ها

عنوان مقاله [English]

Screening of Significant Factors in Uranium Biosorption from Aqueous Solutions Using Pseudomonas Putida Immobilized on Chitosan

نویسندگان [English]

  • H Sohbatzadeh Lonbar
  • A Keshtkar
  • J Safdari
  • F Fatemi Ardestani
  • M Ghasemi Torkabadi

چکیده [English]

Heavy metal sequestration from industrial wastewater is a serious environmental problem especially in developing countries. Among various treatment technologies, it seems that biosoprtion is a promising alternative method. Microbial–based biosorbents are effective and applicable for heavy metals removal from aqueous solutions. The present study investigated the ability of Pseudomonas putida immobilized on chitosan to adsorb uranium (VI) from the aqueous solution. The biosorption process factors were screened using Plackett–Burman design. The results showed that the biosorbent dosage, initial concentration, biosorbent particle size, bacteria wt.% in the biosorbent and pH were the most significant parameters, respectively while temperature was the only insignificant parameter in the biosorption process. Maximum practical biosorption capacity was 536.08 mg g–1 obtained from 15 wt.% of the bacterial cells immobilized on chitosan. Biosorption equilibrium isotherms were analyzed by Langmuir, Freundlich and Dubinin–Radushkevhch models. For Pseudomonas putida immobilized on chitosan, the Langmuir isotherm model (R2=0.983) was proved to fit the equilibrium data best with the maximum capacities of 588.23 and 454.54 mg g–1 for the biosorbent and pure chitosan, respectively. In conclusion, the present study indicated that the prepared composite biosorbent could be a suitable candidate for uranium (VI) biosorption.

کلیدواژه‌ها [English]

  • Biosorption
  • Uranium(VI)
  • Bacterium
  • Pseudomonas Putida
  • Chitosan
[1] M. Ahmaruzzaman, Industrial wastes as low-cost potential adsorbents for the treatment of wastewater laden with heavy metals, Adv. Colloid Interfac. 166 (2011) 36-59.
 
[2] D.A. Carvajal, Y.P. Katsenovich, L.E. Lagos, The effects of aqueous bicarbonate and calcium ions on uranium biosorption by Arthrobacter G975 strain, Chem. Geol. 330-331 (2012) 51-59.
 
[3] J. Wang, C. Chen, Biosorbents for heavy metals removal and their future, Biotechnol. Adv. 27 (2009) 195–226.
 
[4] K. Vijayaraghavan, Y.-S. Yun, Bacterial biosorbents and biosorption, Biotechnol. Adv. 26 (2008) 266-291.
 
[5] S. Madala, S.K. Nadavala, S. Vudagandla, V.M. Boddu, K. Abburi, Equilibrium, kinetics and thermodynamics of Cadmium (II) biosorption on to composite chitosan biosorbent, Arab. J. Chem. 10 (2013) S1883-S1893.
 
[6] F. Colak, N. Atarb, D. Yazıcıoglu, A. Olgun, Biosorption of lead from aqueous solutions by Bacillus strains possessing heavy-metal resistance, Chem. Eng. J. 173 (2011) 422-428.
 
[7] A.R. Keshtkar, F. Kafshgari, Application of Ca-Pretreated Brown Alga for Heavy Metals Removal from Esfahan Uranium Conversion Facility (UCF) Wastewater, J. of Nuclear Sci. and Tech. 67 (2014) 22-30 (In Persian).
 
[8] S. Sana, R. Roostaazad, S. Yaghmaei, Biosorption of Uranium (VI) from Aqueous Solution by Pretreated Aspergillus niger Using Sodium Hydroxide, IJCCE. 34(1) (2015) 65-74.
 
[9] A. Keshtkar, M.M. Montazer Rahmati, N. Khodapanah, Application of Two-Parameter and Three-Parameter Isotherm Models at Uranium Biosorption by Baker's Yeast, J. of Nuclear Sci. and Tech. 50 (2010) 1-8 (In Persian).
 
[10] M.L. Merroun, S. Selenska-Pobell, Bacterial interactions with uranium: An environmental perspective, J. Contam. Hydrol. 102 (2008) 285–295.
 
[11] D. Park, Y.-S. Yun, J.M. Park, The Past, Present, and Future Trends of Biosorption, Biotechnol. Bioproc. E. 15 (2010) 86-102.
 
[12] P. Sar, S.K. Kazy, S.F. D’Souza, Radionuclide remediation using a bacterial biosorbent, Int. Biodeter. Biodegr. 54 (2004) 193-202.
 
[13] Z.R. Yelebe, B.Z. Yelebe, R.J. Samuel, Design of fixed bed column for the removal of metal contaminations from industrial wastewater, J. Eng. Appl. Sci. 5(2) (2013) 68-77.
 
[14] S.C.S. Martins, C.M. Martins, L.M.C.G. Fiúza, S.T. Santaella, Immobilization of microbial cells: A promising tool for treatment of toxic pollutants in industrial wastewater, Afr. J. Biotechnol. 12(28) (2013) 4412-4418.
 
[15] G. Xiao, X. Zhang, H. Su, T. Tan, Plate column biosorption of Cu(II) on membrane-type biosorbent (MBS) of Penicillium biomass: Optimization using statistical design methods, Bioresource Technol. 143 (2013) 490-498.
 
[16] J. Wang, C. Chen, Chitosan-based biosorbents: Modification and application for biosorption of heavy metals and radionuclides, Bioresource Technol. 160 (2014) 129-141.
 
[17] J. Choi, J.Y. Lee, J.-S. Yang, Biosorption of heavy metals and uranium by starfish and Pseudomonas putida, J. Hazard. Mater. 161 (2009) 157-162.
 
[18] W.S. Wan Ngah, M.A.K.M. Hanafiah, S.S. Yong, Adsorption of humic acid from aqueous solutions on crosslinked chitosan–epichlorohydrin beads: Kinetics and isotherm studies, Colloid. Surfaces B 65 (2008) 18-24.
 
[19] N.T. Abdel-Ghani, G.A. El-Chaghaby, Biosorption for metal ions removal from aqueous solutions: a review of recent studies, IJLRST. 3(1) (2014) 24-42.
 
[20] W.S. Wan Ngah, S. Fatinathan, Adsorption characterization of Pb(II) and Cu(II) ions onto chitosan-tripolyphosphate beads: Kinetic, equilibrium and thermodynamic studies, J. Environ. Manage. 91 (2010) 958-969.
 
[21] G.H. Mirzabe, A.R. Keshtkar, Application of response surface methodology for thorium adsorption on PVA/Fe3O4/SiO2/APTES nanohybrid adsorbent, J. Ind. Eng. Chem. 26 (2015) 277-285.
 
[22] Y.-g. LIU, T. LIAO, Z.-b. HE, T.-t. LI, H. WANG, X.-j. HU, Y.-m. GUO, Y. HE, Biosorption of copper(II) from aqueous solution by Bacillus subtilis cells immobilized into chitosan beads, T. Nonferr. Metal. Soc. 23 (2013) 1804-1814.
 
[23] M. Roosta, M. Ghaedi, A. Daneshfar, R. Sahraei, Experimental design based response surface methodology optimization of ultrasonic assisted adsorption of safaranin O by tin sulfide nanoparticle loaded on activated carbon, Spectrochim. Acta A 122 (2014) 223–231.
[24] P. Kotrba, M. Mackova, T. Macek, Microbial Biosorption of Metals, Springer Science+Business Media B.V., 2011.
 
[25] D. Humelnicu, M.V. Dinu, E.S. Dragan, Adsorption characteristics of UO2 2+ and Th4+ ions from simulated radioactive solutions onto chitosan/clinoptilolite sorbents, J. Hazard. Mater. 185 (2011) 447-455.
 
[26] F. Wang, L. Tan, Q. Liu, R. Li, Z. Li, H. Zhang, S. Hu, L. Liu, J. Wang, Biosorption characteristics of Uranium (VI) from aqueous solution by pollen pini, J. Environ. Radioactiv. 150 (2015) 93-98.
 
[27] J.-s. Wang, X.-j. Hu, J. Wang, Z.-l. Bao, S.-b. Xie, J.-h. Yang, The tolerance of Rhizopus arrihizus to U(VI) and biosorption behavior of U(VI) onto R. arrihizus, Biochem. Eng. J. 51 (2010) 19–23.
 
[28] K. Akhtar, M.W. Akhtar, A.M. Khalid, Removal and recovery of uranium from aqueous solutions by Trichoderma harzianum, Water Res. 41 (2007) 1366-1378.
[29] R.B. Sashidhar, S. Kalaignana Selvi, V.T.P. Vinod, T. Kosuri, D. Raju, R. Karuna, Bioprospecting of gum kondagogu (Cochlospermum gossypium) for bioremediation of uranium (VI) from aqueous solution and synthetic nuclear power reactor effluents, J. Environ. Radioactiv. 148 (2015) 33-41.
 
[30] C. Pang, Y.-H. Liu, X.-H. Cao, M. Li, G.-L. Huang, R. Hua, C.-X. Wang, Y.-T. Liu, X.-F. An, Biosorption of uranium(VI) from aqueous solution by dead fungal biomass of Penicillium citrinum, Chem. Eng. J. 170 (2011) 1-6.
 
[31] A.R. Keshtkar, M. Mohammadi, M.A. Moosavian, Equilibrium biosorption studies of wastewater U(VI), Cu(II) and Ni(II) by the brown alga Cystoseira indica in single, binary and ternary metal systems, J. Radioanal. Nucl. Ch. 303 (2015) 363–376.