نوع مقاله : مقاله پژوهشی

نویسندگان

1 پژوهشکده‌ی علوم هسته‌ای، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی ایران، صندوق پستی: 3486-11365، تهران ـ ایران

2 پژوهشکده‌ی علوم هسته‌ای، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی ایران، صندوق پستی 3486-11365، تهران ایران

چکیده

حذف سزیم پایدار و سزیم-137 به کمک جلبک سبز- آبی یا سیانوباکتری زنده­ی اُسیلاتوریا هوموژنا از محیط­‌های آبی مورد بررسی قرار گرفت. میزان حذف سزیم پایدار و سزیم- 137 بعد از 240 ساعت به ترتیب، برابر با 989 نانوگرم سزیم و 2389 میلی­ بکرل سزیم 137 بر میلی­متر مکعب زیست­‌توده به دست آمد. pH بهینه­‌ی جذب سزیم 10±0.3بود و با تغییر pH در مقادیر 4، 6 و 8 تغییر قابل­‌توجهی برای جذب سزیم به کمک زیست‌­توده­ی سیانوباکتری مشاهده نشد. افزایش مقدار زیست­‌توده­ی سیانوباکتری موجب حذف بیش­تر سزیم شد. بیشینه میزان حذف در محیط کشت مایع محتوی 133 میلی­گرم بر لیتر سزیم و 20.53 میلی­متر مکعب زیست­توده بر میلی­لیتر محیط کشت برابر با 5.75 میلی­گرم بر لیتر بود. درصد حذف سزیم با تغییر غلظت آن از 0.133 تا 332.5میلی­گرم بر لیتر از %1.1، به %5.2 افزایش یافت. در 1200 لوکس روشنایی مقدار بیشینه­‌ی حذف سزیم برابر با 1065 نانوگرم بر میلی­متر مکعب زیست‌­توده و در غلظت 332.5 میلی­گرم بر لیتر سزیم (2.5 میلی­‌مول بر لیتر) میزان جذب 4530 نانوگرم بر میلی­متر مکعب زیست­‌توده به دست آمد. از میکروسکوپ روبشی پروتون و پرتونگاری خودکار برای تأیید جذب سزیم در زیست توده استفاده شد. جذب سزیم پایدار و سزیم-137 منطبق بر معادله­‌ی خطی لانگمویر بود و پارامترهای مدل به ترتیب،  qmax=854 ng Cs/mm3 biomass, 2272 mBq 137Cs/mm3 biomass و b=0.00011(R2=0.97), and b=0.000009 (R2=0.96), respectively به دست آمد.

کلیدواژه‌ها

عنوان مقاله [English]

Bioaccumulation and Biosorption of Stable Cesium and Cesium-137 by Oscillatoria homogenea Cyanobacterium

نویسندگان [English]

  • R Dabbagh 1
  • H Ghafourian 2

چکیده [English]

: Removal of stable cesium and cesium-137 by living filamentous cells of Oscillatoria homogenea cyanobacterium from aqueous solution has been investigated. The removal levels of the stable cesium and cesium-137 were found to be 989ng Cs/mm3 biomass, and 2389 mBq 137Cs/mm3 biomass, respectively, after the contact time of 240 hours. The optimum pH for cesium uptake was 10±0.3. No significant change was observed at the pH values of 4, 6 and 8 for the cesium sorption by the cyanobacterium biomass. Increasing the cyanobacterium biomass caused more removal capacity. The maximum removal efficiency in the liquid culture containing 133 mg/L cesium and 20.53 mm3biomass/ml culturewas 5.75 mg/l. The removal efficiency were found to be 1.1% and 51.2% as the
Cs-133 concentration, ranged beween 0.133 to 332.5 mg/l, respectively. At the 1200 Lux illumination, the maximum removal value was 1065 ng Cs/mm3 biomass, and in the presence of 332.5 mg/l cesium concentration (2.5 mmol/L), the sorption was obtained to be 4530 ng/mm3 biomass. The microprobe PIXE analysis and autoradiography technique were used to confirm the cesium sorption on the biomass. The sorption of the stable cesium and cesium-137 were fitted to Langmuir isotherm, and the model parameters were found to be qmax=854 ng Cs/mm3 biomass, 2272 mBq 137Cs/mm3 biomass, b=0.00011(R2=0.97), and b=0.000009 (R2=0.96), respectively.

کلیدواژه‌ها [English]

  • Biosorption
  • Bioaccumulation
  • Cesium-137
  • Cyanobacteria
  1. N. Tomika, H. Uchiyama, O. Yagi, Cesium accumulation and growth characteristics of Rhodococcus erythropolis CS98 and Rhodococcus spp.Strain CS402, Applied and environmental microbiology, 60 (1994) 2227-2231.

 2.   V. Gloaguen, H. Morvan, L. Hoffmann, Metal accumulation by immobilized cyanobacterial mats from A thermal spring, Journal of Environmental Science Health, A31(1996) 2437-2451.

 3.   G. W. Garnham, G. A. Codd, G. M. Gadd, Accumulation of zirconium by microalgae and cyanobacteria, Appllied Microbiology Biotechnology, 39 (1993) 666-672.

 4.   G. W. Garnham, G. A. Codd, G. M. Gadd, Accumulation of technetium by cyanobacteria, Journal of Applied Phycology, 5 (1993) 307-315.

 5.   P. Plato, J. T. Denovan, The infeluence of potassium on the removal of 137Cs by live Chlorella from low level radioactive wastes, RadiationBotany, 14 (1974) 37-41.

 6.   S. V. Avery, Microbial interactions with caesium-implication for biotechnology, Journal of Chemical Technology and Biotechnology, 62 (1995) 3-16.

 7.   B. Volesky, Sorption and biosorption, Bv sorbex Inc, Montreal (2003).

 8.   H. Ehrlich, C. Brierly, Microbial Mineral Recovery, Mc Graw-Hill pub, New York (1990).

 9.   S. V. Avery, G. A. Codd, G. M. Gadd, Caesium accumulation and interaction with other monovalent cations in the cyanobacterium Synechocystis PCC 6803, Journal of General Microbiology, 137 (1991) 405-413.

10. S. Singh, S. Negi, N. Bharati, H. N. Singh, Common nitrogen control of caesium uptake, caesium toxicity and ammonium (methylammonium) uptake in the cyanobacterium Nostoc muscorum, FEMS microbiology letters, 117 (1994) 243-248.

 11. S. V. Avery, G. A. Codd, G. M. Gadd, Caesium transport in the cyanobacterium Anabaena variabilis: Kinetics and evidence for uptake via ammonium transport system(S), FEMS Microbiology Letters, 95 (1992) 235-258.

 12.J. R. Watts, R. S. Harvey, Uptake and Retention of Cs137 by a Blue-Green Alga in Continuous Flow and Batch, Savanah river plants, Doc No. DPSPU 61-30-8A (1962).

 13. M. Sohrabi, Effective dose to the public from 226Ra in drinking water supplies of Iran, Health Physics, 77 (1999) 3-9.

 14. K. B. D. Kaushik, Laboratory methods for blue-green algae, associated publishing Co, New Delhi (1987).

 15. R. Rippka, Recognition and Identification of cyanobacteria, Methods in enzymology 167 (1988) 3-27.

 16. R. W. Castenholz, Culturing Methods of cyanobacteria, Methods in Enzymology, 167 (1988) 68-93.

 17. R. W. Waterbury, The cyanobacteria-isolation, purification and identification, In: The Prokaryotes, second edition, Springer Pub, Berlin (1992) 2058-2078.

 18. J. B. Waterbury, J. M. Willey, Isolation and Growth of Marine Planktonic cyanobacteria, Methods in Enzymology, 167 (1988) 100-105.

 19. R. Y. Stanier, R. Kunisawa, M. Mamdel, G. Coen-bazire, Purification and properties of unicellular blue-green algae (order chroococcales), Bactriological Reviews, 35 (1971) 171-195.

 20. T. V. Desikachary, C. YANOPHYTA, Indian council of agricultural, New Delhi, (1959).

 21. R. Rippka, Recognition and Identification of cyanobacteria, Methods in Enzymology, 167 (1988) 28-67.

 22. J. T. Staley, M. P. Bryant, N. Pfennig, J. G. Holt (editors), Bergey's Manual of Systematic Bacteriology, Vol. 3, McGraw-Hill Co, New York (2002) 1710.

 23. WHO, Toxic Cyanobacteria in Water: A guide to their public health consequences, monitoring and management, I. Chorus, J. Bartram(editors), Pub on be half of WHO, London, (1999) 359.

 24.D. R. Lide, H. P. R. Frederikse (editors), CRC Handbook of Chemistry and Physics, CRC press, Boca Raton, (1995-1996) 16-8.

 25. R. Jalali-Rad, H. Ghafourian, Y. Asef, S. T. Dalir, M. H. Sahafipour, B. M. Gharanjik, Biosorption of cesium by native and chemically modified biomass of marine algae, introduce the new biosorbents for biotechnology applications, Journal of hazardous materials, B-116, Issues 1-2 (2004) 125-134.

 26. A. M. Zakaria, Removal of cadmium and manganese by a non-toxic strain of fresh water cyanobaterium Gloeothce magna, Water Research, 35 (2001) 4405-4409.

 27. T. D. Reynolds, P. A. Richards, Unit Operations and Processes in Environmental Engineering, PWS pub, Boston (1996).

 28. S. R. Qasim, E. M. Motely, G. Zhu, Water Works Engineering: Planning, Design, and Operation, Prentice Hall New Delhi (2000).

 29. Y. Iwata, M. Suzuki, Pixe application for measurement of bioaccumulation of lead by marine micro-algae, International Journal of PIXE, 10 (2000) 27-35.

 30. N. Tomioka, H. Uchiyama, O. Yagi, Isolation and Characterization of Cesium-Accumulating Bacteria, Applied and Environmental. Microbiology, 58(3) (1992) 1019-1023.

 31. R. Dabbagh, Biosorption and bioaccumulation  of cesium-137 and strontium-90 by isolated and purified cyanobacteria and dried biomass of brown algae, PhD Dissertation, University of Tehran (2006).

 32.R. Rippk, Isolation and purification of cyanobacteria, Methods in enzymology, 167 (1988) 3-27.