نوع مقاله : مقاله پژوهشی

نویسندگان

مجتمع پژوهشی شمال غرب، پژوهشگاه علوم و فنون هسته‌ای، صندوق پستی: 836-14395، بناب ـ ایران

چکیده

در این مقاله، مرحله‌های انتخاب بلور، آماده‌سازی نمونه‌ها و نحوه‌ی ایجاد اتصال‌های شوتکی و اهمی برای ساخت آشکارساز CdZnT یا CZT قابل حمل و با قابلیت کار در دمای اتاق ارایه شده است. ابتدا درصد عناصر و اندازه‌های بلور CdZnTe با کد C4MCNP تعیین و تأثیر آن‌ها بر رفتار الکتریکی و آشکارسازی قطعه بررسی شد. پس از تهیه‌ی بلور، سطح بلور به روش شیمیایی آماده و فعال‌سازی شد. در طرف صاف‌تر سطح بلور، فلز طلا با خلوص بالا به ضخامت 100 نانومتر به عنوان اتصال شوتکی و بر روی طرف دیگر، فلز ایندیم به عنوان اتصال اهمی با روش تبخیر فیزیکی، لایه نشانی شد. مشخصات الکتریکی حسگر ساخته شده با استفاده از تجهیزهای دقیق اندازه‌گیری جریان ولتاژ، جریان- ظرفیت و
جریان- دما اندازه‌گیری و مشخصه‌های فیزیکی قطعه تعیین شد. در نهایت حسگر به پیش‌تقویت‌کننده، شکل‌دهنده‌ی تپ، تقویت‌کننده و تحلیل‌گر بس‌کاناله متصل شد. آشکارساز ساخته شده توسط چشمه‌های نقطه‌ای Cs137، Th232 آزموده شده و با نمونه‌هایی از اورانیم مقیاس‌بندی شد. نتیجه‌ها نشان داد که پهنای نیم- ارتفاع برای قله‌ی keV 662، برابر با %8/3 و خطای اندازه‌گیری برای نمونه‌های مجهول اورانیم کم‌تر از %3 است.
 

کلیدواژه‌ها

عنوان مقاله [English]

Design and manufacture of CdZnTe semiconductor detector for gamma ray detection

نویسندگان [English]

  • Navid Balkanian
  • Mikaeil Yeganeh
  • Shahriar Rahmatolapour
  • Mehdi Taghavi
  • Abolfazl Souri

چکیده [English]

In this paper, the process of crystal selection, samples preparation and method of shottkey and ohmic contacts creation for CdZnTe or CZT detector, to be used as a portable device operating at room temperature, have been reported. First, the ratio of CZT element and crystal dimensions was determined via MCNP4C code and its effect on the electrical and detection behavior was investigated. After the crystal preparation, its surface was activated by chemical method. On one side, Au with a thickness of 100nm was coated as a schottkey contact and on the other side, in was coated as an ohmic contact with physical vapor deposition. The electrical characters of the sensor such as current-voltage, current-capacitance and current-temperature were measured. The sensor was connected to a pre-amp, pulse shaping, amplifier and MCA. The detector was tested by point sources of Cs-137 and Th-232, and was calibrated by standard uranium samples. The results showed that the FWHM of 662 keV is 3.8 keV and the error for the enrichment determination was less than 3%.
 
 

کلیدواژه‌ها [English]

  • CZT crystal
  • Schottkey contact
  • Ohmic contact
[1] R. Arlt, V. Ivanov, K. Parnham, Advantages and Use of CdZnTe Detectors in Safeguards Measurements, International Atomic Energy Agency, Department of Safeguards, Wagramer Strasse 5.
[2] T.E. Schlesingera, J.E. Toney, H. Yoon, E.Y. Leed, B.A. Brunettd, L. Franksd, R.B. Jamesd, Cadmium zinc telluride and its use as a nuclear radiation detector material, Materials Science and Engineering, 32 (2001) 103-189.
[3] R. Carchon, M. Moeslinger, L. Bourva, C. Bass, M. Zendel, Gamma radiation detectors for safeguards applications, Nuclear Instruments and Methods in Physics Research A., 579 (2007) 380–383.
[4] A.A. Melinkov, A.S. Sigov, K.A. Vorotilov, A.A. Davydov, L.A. Topolova, N.V. Zhavronkov, Growth of CdZnTe single crystals for radiation detectors, J. Crystal Growth, 197 (1999) 666.
[5] Sh. Zhu, B. Zhao, Q.F. Yu, Sh. Shao, X. Zhu, Modified growth of CdZnTe single crystals, J. Crystal Growth, 208 (2000) 264.
[6] Y. Eisen, A. Shor, CdTe and CdZnTe materials for room-temprature X-ray and gamma ray detectors, J. Crystal Growth, 184/185 (1998) 01302.
[7] N.N. Kolesnikov, A.A. Kolchin, D.L. Alov, Yu.N. Ivanov, A.A. Chernov, M. Schieber, H. Hermon, R.B. James, M.S. Goorsky, H. Yoon, J. Toney, B. Brunett, T.E. Schlesinger, Growth and characterization of p-type Cd1-xZnxTe (x=0.1, 0.2, 0.3), J. Crystal Growth, 174 (1997) 256.
[8] J.J. Perez Buenno, M.E. Rodriguez, O. Zelaya-Angel, R. Baquero, J. Gonzalez-Hernandez, B.J. Banos, L. Fitzpatrick, Growth and characterization of Cd1-x Znx Te crystals with high Zn concentration, J. Crystal Growth, 209 (2000) 701.
[9] Zh. Gangqiang, W. Jie, D. Zeng, Y. Xu, W. Zhang, F. Xu, The study on Schottky contact between Au and clean CdZnTe, Surface Science, 600 (2006) 2629–2632.
[10] E. Aleksey, E. Bolotnikov, S. Boggs, C.M. Hubert Chen, R. Walter, C. Fiona, A. Harrison, S.M. Schindler, Properties of PtSchottky type contacts on high-resistivity CdZnTe detectors, Nuclear Instruments and Methods in Physics Research A., 482 (2002) 395–407.
[11] KiHyun Kim, ShinHang Cho, Jong Hee Suh, Jae Ho Won, Jin Ki Hong, Sun Ung Kim, Schottky-type polycrystalline CdZnTe X-ray detectors, Current Applied Physics, 9 (2009) 306–310.
[12] S.V. Vadawale, S. Purohit, M. Shanmugam, Y.B. Acharya, J.N. Goswami, M. Sudhakar, P. Sreekumar, Characterization and selection of CZT detector modules for HEX experiment onboard Chandrayaan-1, Nuclear Instruments and Methods in Physics Research A., 598 (2009) 485-495.
[13] N. Balkanian, A. Ghaneh, M.A. Yeganeh, Investigation of the dimension, linear attenuation coefficient and weight percent of the Cd1-xznxTe crystal in the CZT detectors with of the MCNP code, 17th Iranian Nuclear Conference, Esfahan (1388).
[14] M.A. Yeganeh, Sh. Ramatollahpour, Nuclear test of CdZnTe crystal with Ni schottky and In ohmic contacts, 18th Iranian nuclear conference, Yazd (1390).
[15] M.A. Yeganeh, Sh. Ramatollahpour, Investigation of the Pt/n-CdZnTe contacts electrical characteristics with series resistance as X and Gamma ray detectors, Iranian Physics Conference, Hamadan (1389).
[16] Q. Zheng, F. Dierre, J. Crocco, V. Carcelen, H. Bensalah, J.L. Plaza, E. Dieguez, Influnce of surface preparation on CdZnTe nuclear radiation detectors, Applied Surface Sci., 257 (2011) 8742-8746.
[17] Gangqiang Zha, Wanqi Jie, Tingting Tan, Peisen Li, The surface leakage currents of CdZnTe wafers Applied Surface science, 253 (2007) 3476-3479.
[18] M.J. Mescher, T.E. Schlesinger, J.E. Toney, B.A. Brunett, Development of Dry Processing Techniques for CdZnTe Surface Passivation, Journal of Electronic Materials, 28 (6) (1999) 700-704.
[19] Biswajit. Ghosh, Electrical contacts for II–VI semiconducting devices, Microelectronic Engi-neering, 86 (2009) 2187-2206.
[20] M.E. Özsan, P.J. Sellin, P. Veeramani, S.J. Hinder, M.L.T. Monnier, G. Prekas, A. Lohstroh, M.A. Baker, Chemical etching and surface oxidation studies of cadmium zinc telluride radiation detectors, Surface and Interface Analysis, 42 (2000) 795-798.
[21] A.J. Nelson, A.M. Conway, C.E. Reinhardt, J.L. Ferreira, R.J. Nikolic, S.A. Payne, X-ray photoemission analysis of passivated Cd(1-x)ZnxTe surfaces for improved radiation detectors, Materials Letters, 63 (2011) 180-181.
[22] T.H. Prettyman, M.A. Hoffbauer, J.A. Rennie, Performance of CdZnTe detectors passivated with energetic oxygen atoms, Nuclear Instruments and Methods in Physics Research A., 422 (1999) 179-184.
[23] H. Hermon, M. Schieber, R.B. James, J. Lund, A.J. Antolak, D.H. Morse, N.N.P. Kolesnikov, Y.N. Ivanov, M.S. Goorskyd, H. Yoond, J. Toneye, T.E. Schlesinger, Homogeneity of CdZnTe detectors, Nuclear Instruments and Methods in Physics Research A., 410 (1998) l00-106.
[24] M. Schieber, T.E. Schlesinger, R.B. James, H. Hermon, H. Yoon, M. Goorski, Study of impurity segregation, crystallininty and detector perfor-mance of melt-grown cadmium zinc telluride crystals, J. Crystal Growth, 237 (2002) 2082.
[25] R.K. Mamedov a, M.A. Yeganeh, Current transport and formation of energy structures in narrow Au/n-GaAs Schottky diodes, Micro-electronics Reliability, 52 (2012) 418–424.
[26] Simon M. Sze, K. Kwok, Ng Physics of Semiconductor Devices 3rd Edition, Jonh wiley (2007).
[27] H.A. Smith, The Measurement of Uranium Enrichment, Los Alamos National Laboratory (1990).
[28] P. Mortreau, R. Berndt, Handbook of Gamma Spectrometry Methods for Non-destructive Assay of Nuclear Materials, (2006).