نوع مقاله : مقاله پژوهشی

نویسندگان

1 پژوهشکده رآکتور، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی ایران، صندوق پستی: 51113-14399، تهران ـ ایران

2 پمرکز نظام ایمنی هسته‌ای کشور، سازمان انرژی اتمی ایران، صندوق پستی: 1339-14155، تهران ـ ایران

3 گروه ایمنی هسته‌ای و حفاظت پرتوی، پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی ایران، صندوق پستی: 836-14395، تهران ـ ایران

4 مرکز نظام ایمنی هسته‌ای کشور، سازمان انرژی اتمی ایران، صندوق پستی: 1339-14155، تهران ـ ایران

چکیده

رآکتورهای آب سبک با بازده بالا یکی از انواع رآکتورهای آب سبک در فشار فوق بحرانی‌اند که توسط اتحادیه‌ی اروپا مورد مطالعه و طراحی‌ قرار گرفته است. ‌این مقاله تغییرات سطح مقطع‌های نوترونی و ضریب تکثیر مؤثر ‌رآکتور ‌را برای مقدار‌های مختلف نانوذره در خنک‌کننده مورد بررسی قرار می‌دهد. در این رابطه، 4 نانوسیال با مقدار‌های مختلف نانوذرات 3O 2‌Al‌، 2TiO، CuO و Cu بررسی شده است. با به‌کا‌ر‌گیری کدهای 5WIMS-D و 2CITATION-LDI نوع و غلظت ‌نانوذره‌ی مناسب در سیال خنک‌کننده محاسبه شد. یافته‌های اولیه نشان داد که در مقدار‌های پایین (کمتر از 1 درصد حجمی) استفاده از نانوسیال آلومینا ‌در خنک‌کننده‌ی رآکتور ‌مناسب‌تر ‌از سایر ‌نانوسیال‌های مورد بررسی است.
 

کلیدواژه‌ها

عنوان مقاله [English]

Neutronic analysis of nanofluid as a coolant in HPLWR fuel assembly

نویسندگان [English]

  • Ehsan zarifi 1
  • Kamran Sepanloo 2 3
  • Naeimodin Mataji Kojouri 4 3

چکیده [English]

The main objective of this study is to predict the neutronic behavior of nanofluids as a coolant in the fuel assembly of the HPLWR. The high-performance light water reactor (HPLWR) is the European version of the supercritical-pressure water cooled reactor (SCWR). Light water reactor at supercritical pressure which is currently under the design, is considered as a new generation of nuclear reactors. The variations of neutron cross sections and effective multiplication factor have been investigated in different concentrations of nanoparticles in the coolant and moderator channel. In the present analysis, water-based nanofluids containing various volume fractions of Al2O3, TiO2, CuO and Cu nanoparticles are studied. The neutronic properties of nanofluids with the optimum concentration of nanoparticles are calculated using WIMS-D5 and CITATION-LDI2 codes. The results show that at low concentrations of less than 1 volume percentage, alumina is the optimum nanoparticle for the normal operation of a reactor.
 
 

کلیدواژه‌ها [English]

  • Nanofluid
  • Neutronic analysis
  • HPLWR
  • WIMS code
  • CITATION code
[1] J. Buongiorno, B. Truong, Preliminary study of water-based nanofluid coolants for PWRs, Trans. Am. Nucl. Soc., 92 (2005) 383-384.
[2] J. Buongiorno, L.W. Hu, S.J. Kim, R. Hannink, B. Truong, E. Forrest, Nanofluids for enhanced economics and safety of nuclear reactors: An evaluation of the potential features, Issues and Research Gaps. Nucl. Technol., 162 (2008) 80-91.
[3] J. Buongiorno, L.W. Hu, G. Apostolakis, R. Hanninka, T. Lucasa, A. Chupin, A feasibility assessment of the use of nanofluids to enhance the in-vessel retention capability in light-water reactors, Nucl. Eng. Des. 239(5) (2009) 941-948.
[4] K. Hadad, A. Hajizadeh, K. Jafarpour, B.D. Ganapo, Neutronic study of nanofluids application to VVER-1000, Ann. Nucl. Energy, 37 (2010) 1447–1455.
[5] E. Zarifi, G. Jahanfarnia, F. Veisy, Neutronic Analysis of Nanofluids as a Coolant in Bushehr VVER-1000 Reactor, Nukleonika, 52(3) (2012) 375-381.
[6] E. Zarifi, G. Jahanfarnia, F. Veisy, Neutronic simulation of water-based Nanofluids as a Coolant in VVER-1000 Reactor, Progress in Nuclear Energy, 65 (2013 b) 32-41.
[7] M. Nazififard, M. Nematollahi, K. Jafarpur, K.Y. Suh, Numerical Simulation of Water-Based Alumina Nanofluid in Subchannel Geometry, Science and Technology of Nuclear Installations, 928406 (2012).
[8] E. Zarifi, G. Jahanfarnia, F. Veisy, Subchannel Analysis of Nanofluids Application to VVER-1000 Reactor, Chemical Engineering Research and Design, 91(4) (2013 c) 625-632.
[9] E. Zarifi, G. Jahanfarnia, F. Veisy, Thermal-hydraulic modeling of nanofluids as the coolant in VVER-1000 reactor core by the porous media approach, Annals of Nuclear Energy, 51 (2013 a) 203-212.
[10] E. Zarifi, G. Jahanfarnia, Subchannel analysis of TiO2 nanofluid as the coolant in VVER-1000 reactor, Progress in Nuclear Energy, 73 (2014) 140-152.
[11] O. Safarzadeh, A.S. Shirani, A. Minuchehr, F. Saadatian-derakhshandeh, Coupled neutronic/ thermo-hydraulic analysis of water/Al2O3 nanofluids in a VVER-1000 reactor, Annals of Nuclear Energy, 65 (2014) 72-77.
[12] NEA, NEA-1507, WIMSD-5B (98/11), Deterministic Multi-group Reactor Lattice Calculations (1999).
[13] T.B. Fowler, CITATION-LDI2 Nuclear Reactor Core Analysis Code System, CCC-643, Oak Ridge National Laboratory, Oak Ridge, Tennessee (1999).
[14] US DOE, Nuclear Energy Research Advisory Committee and the Generation ІV International Forum, a Technology Roadmap for the G. ІV Nuclear Energy System (2002).
[15] X. Cheng, Design analysis of core assemblies for supercritical pressure conditions Nucl, Eng. Des., 223 (2003) 279-294.
[16] D. Squarer, T. Schulenberg, D. Struwe, Y. Oka, D. Bittermann, N. Aksan, C. Maráczy, R. Kyrki-Rajamäki, A. Souyri, P. Dumaz, High performance light water reactor, Nucl. Eng. Des., 221 (2003) 167–180.
[17] V. Velagapudi, R.K. Konijeti, C.S. Aduru, Empirical correlation to predict thermo-physical and heat transfer characteristics of nanofluids, Themal Science, 12(2) (2008) 27-37.
[18] J.J. Duderstadt, L.J. Hamilton, Nuclear Reactor Analysis, John Wiley & Sons Inc (1976).
[19] S. Tashakora, A.A. Salehia, G. Jahanfarnia, A. Abbaspour Tehrani Fard, Neutronic analysis of HPLWR fuel assembly cluster, Annals of Nuclear Energy, 50 (2012) 38-43.
[20] Y. Oka, S. Koshizuka, Y. Ishiwatari, A. Yamaji, Super light water reactors and super fast reactors, Supercritical-Pressure Light Water Cooled Reactors, Springer Science+Business Media (2010).